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Abstract
We review 15 techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series

and evaluate their performance for different artificial gap scenarios based on a set of 10 benchmark datasets from six forested sites in

Europe.

The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE

values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g.,

nighttime flux, advection). The gap filling was examined by generating 50 secondary datasets with artificial gaps (ranging in length

from single half-hours to 12 consecutive days) for each benchmark dataset and evaluating the performance with a variety of

statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half-

hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more

pronounced during the day than at night.

The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-

parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were

generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV)
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showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the

multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs

showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed.

An uncertainty analysis comparing the estimated random error in the 10 benchmark datasets with the artificial gap residuals

suggested that the techniques are already at or very close to the noise limit of the measurements. Based on the techniques and site

data examined here, the effect of gap filling on the annual sums of NEE is modest, with most techniques falling within a range of

�25 g C m�2 year�1.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

Several hundred flux tower sites have been estab-

lished around the world (Baldocchi et al., 2001a),

recording CO2 flux, energy and momentum flux, storage

change of CO2 in the canopy air layer, and meteor-

ological variables including global radiation (Rg),

photosynthetic photon flux density (PPFD), air and

soil temperature (Ta, Ts), relative humidity (Rh),

precipitation (P) and soil water content (SWC). A list

of abbreviations can be found in Table 1.

The eddy covariance method is the main monitoring

tool for measuring the net ecosystem exchange (NEE),

which is defined as the net flux of CO2 and equals the

balance of ecosystem respiration (release) minus photo-

synthesis (uptake). The measurements are reported on a

half-hourly or hourly basis. Calibrations or equipment

failures result in occasional gaps in these data time series.

Data quality checks including stationarity tests and the

detection of system ‘‘spikes’’ lead to the rejection of

‘‘bad’’data, generating additional gaps in the data record.

A major limitation of the eddy covariance technique is

the requirement for turbulent atmospheric conditions.

Rejecting data acquired during low turbulence conditions

based on a friction velocity threshold (u*) (Goulden et al.,

1997; Aubinet et al., 2000; Papale et al., 2006), or other

criteria (Foken et al., 2004; Ruppert et al., 2006) results in

further gaps such that typically 20–60% of an annual

dataset is missing, with the majority of the gaps occurring

during nighttime.

These fragmented data sets contain sufficient

information for half-hourly model fitting but complete-

ness is needed for daily and annual sums. These sums

are of widespread interest, e.g., to estimate ecosystem

carbon budgets, to evaluate process model predictions,

and for comparison with biometric measurements.

Availability of the associated meteorological data

permits a reconstruction of the NEE during the gaps,
and has led to the development of a variety of gap-filling

techniques to provide complete NEE datasets.

1.2. Goals of the comparison

Since the pioneering work of Falge et al. (2001), the

number of gap-filling techniques in use has increased.

Many investigators have independently developed and

implemented their own site-specific gap-filling techni-

ques. Current gap-filling techniques (Barr et al., 2004;

Braswell et al., 2005; Desai et al., 2005; Falge et al.,

2001; Gove and Hollinger, 2006; Hollinger et al., 2004;

Hui et al., 2004; Knorr and Kattge, 2005; Noormets

et al., 2007; Ooba et al., 2006; Papale and Valentini,

2003; Reichstein et al., 2005; Richardson et al., 2006b;

Schwalm et al., 2007; Stauch and Jarvis, 2006) are

based on a wide range of approaches, including

interpolation, probabilistic filling, look-up tables,

non-linear regression, artificial neural networks, and

process-based models in a data-assimilation mode. This

diversity hinders synthesis activities because the biases

and uncertainties associated with each technique are

unknown (Morgenstern et al., 2004).

This study reviews a variety of gap-filling techniques

and applies the techniques to a set of standardized

benchmark datasets from six forested sites in Europe.

Artificial gaps were added to observed NEE time series,

and the ability of different gap-filling techniques to

replicate the missing data was evaluated using tradi-

tional statistical analysis. Our analysis does not attempt

to address matters related to the quality of the measured

fluxes themselves, such as systematic biases or

representativeness.

2. Comparison materials and method

For this comparison, we created a series of 50

artificial gap scenarios (Appendix A.1), which were

superimposed on observed NEE time series of 10

benchmark datasets from six different European forest
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Table 1

List of abbreviations

Gap-filling techniques

NLR_AM Non-linear regression (Arrhenius, Michaelis–Menten)

NLR_EM Non-linear regression (Eyring, Michaelis–Menten)

NLR_FCRN Non-linear regression of Fluxnet Canada Res. Network (logistic equation, Michaelis-Menten)

NLR_FM Non-linear regression (Fourier, Michaelis–Menten)

NLR_LM Non-linear regression (Lloyd–Taylor, Michaelis–Menten)

UKF_LM Unscented Kalman Filter (Lloyd–Taylor, Michaelis–Menten)

ANN_BR Artificial neural network with Bayesian regularization

ANN_PS Artificial neural network with pre-sampling and smoothing

ANN_S Standard artificial neural network

LUT Look-up table

MDS Marginal distribution sampling

SPM Semi-parametric model

MDV Mean diurnal variation

MIM Multiple imputation model

BETHY Biosphere energy-transfer hydrology model

Flux variables

NEE Net ecosystem exchange

GPP Gross primary production

ER Ecosystem respiration

Flux unit g C m�2 day�1 (1.0 g C m�2 day�1 = 0.96 mmol CO2 m�2 s�1)

Measured variables

LE Latent energy (W m�2)

Rg Global radiation (W m�2)

PPFD Photosynthetic photon flux density (mmol m�2 s�1)

Ta Temperature of the air (8C)

Ts Temperature of the soil (8C)

Rh Relative humidity (%)

P Precipitation (mm)

SWC Soil water contents (% vol)

u* Friction velocity (m s�1)

LAI Leaf area index

Statistical analysis

R2 Coefficient of determination

MAE Mean absolute error

RSME Root mean square error

BE Bias error

ANOVA Analysis of variance

t Time

hh Half-hour(ly)

DSum Daily sum

ASum Annual sum
sites (Table 2). The gap-filling error was calculated

using the observed fluxes in these artificial gaps to

validate the predictions of each filling technique. We

expected that the techniques’ performance would vary

among sites and would depend on the gap length, the

time of day (day versus night), and the level of data

aggregation (native half-hourly time step versus daily).

2.1. The 10 benchmark datasets

The comparison was based on a selection of 10

datasets with high coverage of mean half-hourly NEE
flux and accompanying meteorological data, chosen

from six forested European sites and for 1 or 2 years

between 2000 and 2002. The sites are representative of

European forests and climates (see Table 2), and include

Mediterranean, deciduous broadleaf, and evergreen

coniferous sites over a 208 latitudinal range.

The NEE data of each benchmark dataset were

quality checked according to Papale et al. (2006),

including storage correction, spike detection, and u*

filtering (based on a slightly modified version of the

method described in Reichstein et al., 2005). This

resulted in valid observed NEE data with a typical
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coverage of 80–90% during daytime and 35% during

nighttime (exact percentages of available NEE data for

each site are given in Table 2). Since this comparison is

based on observed datasets, these primary data files are

highly fragmented with half-hourly to several days-long

gaps and have measurement noise and errors due to the

limitation of the eddy covariance technique (e.g.,

Loescher et al., 2006; Richardson et al., 2006a).

Since the focus of this comparison is on the

performance of the NEE gap filling, the meteorological

data were previously filled if necessary (see

Appendix A.2 for more information).

2.2. The gap scenarios

The performance of the techniques was evaluated by

comparing observed NEE with predicted (filled) NEE

values. We generated secondary datasets by flagging

10% of the data as unavailable (artificial gaps). Ten

percent was chosen as a compromise between sufficient

power for statistical analyses and avoiding excessive

additional fragmentation of the data files. The flagging

information was contained in one single ‘‘keyfile’’,

which was then applied to each of the 10 benchmark

datasets. These artificial gaps were superimposed on the

already incomplete data in the files, without regard for

the distribution of real gaps in the NEE data.

Flagging keys for four different gap lengths with

exponentially increasing length were considered alone

and in combination in order to evaluate the sensitivity of

the filling techniques to gap length. The keyfiles thus

contained five artificial gap length scenarios:
(1) ‘‘
very short gaps’’ of single half-hour, often present

in the real dataset due to filtered out spikes in the

measurements,
(2) ‘‘
short gaps’’ of eight consecutive half-hours, often

found during stable nighttime conditions,
(3) ‘‘
medium gaps’’ of 64 half-hours (approx. 1.5 days),

often present due to system failure,
(4) ‘‘
long gaps’’ of 12 consecutive days to test the limits

of the techniques,
(5) a
 ‘‘mixed scenario’’, including a combination of the

preceding gap length types to serve as a crosscheck

of the average performance in scenarios 1–4.
To achieve statistical validity, the artificial gaps were

distributed randomly and each of the five artificial gap

length scenarios was permuted 10 times, thereby

sampling 1 � (1 � 10%)10 = 65% of the total yearly

data. In addition, each technique was used to fill the real

gaps in the 10 datasets. The 50 distinct scenarios plus
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the real gap scenario were processed separately for each

of the 10 benchmark data files. This added up to a total

of 510 submitted run results per gap-filling technique.

A detailed description of the keyfile with the gap

scenarios is given in Appendix A.1. The 10 benchmark

data files and the keyfile are archived on a server at

http://gaia.agraria.unitus.it/database/gfc so that as new

gap-filling techniques are developed in the future, the

results of the present study can serve as a benchmark

against which other techniques can be evaluated.

2.3. Statistical performance measures

The performance of the techniques was evaluated by

comparing observed NEE with predicted (filled) NEE

values. The performance measures (Janssen and

Heuberger, 1995) included the coefficient of determi-

nation (R2) to measure the phase correlation, the

absolute and relative root mean square error (RMSE)

and mean absolute error (MAE) to indicate the

magnitude and distribution of the individual errors,

and the bias error (BE) to indicate the bias induced on

the annual sums.

The statistical sums were calculated using the

individual observed NEE data oi and the predicted

values pi, with ō and p̄ denoting their means:

R2 ¼

�P
ð pi � p̄Þðoi � ōÞ

�2

P
ð pi � p̄Þ2

P
ðoi � ōÞ2

Absolute RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ð pi � oiÞ2

r

Relative RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ð pi � oiÞ2P
ðoiÞ2

s

MAE ¼ 1

N

X
j pi � oij

BE ¼ 1

N

X
ð pi � oiÞ

The statistical metrics were computed for each of the 50

gap scenarios, and then grouped and averaged to aid in

distilling relevant comparison information.

2.4. Daytime and nighttime differentiation

Each of the statistical metrics was computed

separately for the qualitatively different daytime and

nighttime data. Daytime was defined as a positive

photosynthetic photon flux density (PPFD) and night-
time refers to periods of the day with no light (zero

PPFD, with non-zero nocturnal PPFD values set to

zero). During the daytime, positive sensible heat fluxes

create buoyancy that helps to mix the atmosphere. At

nighttime, however, radiative cooling leads to stable

conditions that suppress turbulent mixing. In addition to

the changed meteorological conditions, the absence of

photosynthesis changes the underlying biological

processes. This leads to dramatically different perfor-

mance and behavior of the gap-filling techniques.

For the comparison of gap-filling techniques, the

weighting of the daytime and nighttime contributions to

the statistical metrics is incorrect when day and night

are taken together. More precisely, the ratio of the

number of daytime to nighttime gaps for the real gaps is

at odds with the day–night ratio of the artificial gaps.

The percentage of available observed NEE data in the

10 benchmark datasets is on average 85% for daytime

and 35% for nighttime data (detailed percentages can be

found in Table 2). Thus, the distribution of real gaps of

15% daytime to 65% nighttime results in a day–night

ratio of approximately 1:4. By contrast, the secondary

datasets have 10 percent artificial gaps resulting in 8.5%

daytime and 3.5% nighttime gaps, a ratio of approxi-

mately 2:1. Therefore, in this paper the analysis was

performed separately for daytime and nighttime

periods.

2.5. Analysis of daily and annual sums

An important level of data aggregation is the daily

NEE since it is used in many vegetation and ecosystem

models for parameterization and validation (e.g.,

Hanson et al., 2004). The daily sum of NEE is defined

as the sum of daily half-hourly flux rates NEEhh times

the measurement time interval Dthh:

DSum ¼
X

NEEhh � Dthh:

This comparison used real datasets with fragmented

observed daily data (see Section 2.4). An estimate of the

daily sums was obtained by separating the daytime sum

DSumd and the nighttime sum DSumn and by weighting

these sums with the amount of half-hours of daylight

hhd and the amount of half-hours during nighttime hhn,

respectively:

Weighted DSum ¼ DSumd �
hhd

48
þ DSumn �

hhn

48
:

The observed DSums were then compared with the

predicted DSums for all artificial gaps spanning over a

whole day from the medium and long gap length

http://gaia.agraria.unitus.it/database/gfc
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scenario. About 65% of the days in each year are

sampled by the gap scenarios (see Section 2.3) but only

days with a minimum of four observed data points for

daytime and for nighttime in the benchmark dataset

were considered, which reduced the number of DSums

used to calculate the statistical performance measures to

approximately 150 DSums per benchmark dataset and

gap length scenario.

The annual sum ASum is the sum over all half-hourly

NEE values in a given year, i.e.,

ASum ¼
X

measured

oi þ
X

gapfilled

p j

Persistent biases in the gap filling will lead to an over- or

underestimate of the annual sum.

The annual sum offset DASum resulting from gap-

filling can be estimated from the biases BE of the half-

hourly NEE values or the daily sums as:

DASum ¼ BEðNEEhhÞ � Nhh � Dthh ¼ BEðDSumÞ � Np

with Nhh denoting the number of predicted (gap filled)

0.5-h and Np is the number of predicted days.

3. The gap-filling techniques

3.1. Overview

Fifteen different gap-filling techniques for estimat-

ing net carbon fluxes were evaluated; five non-linear

regression (NLR) methods, a dual unscented Kalman

filter (UKF) approach, three artificial neural networks

(ANN), three types of look-up tables (fixed look-up

table (LUT), marginal distribution sampling (MDS)

method, and semi-parametric model (SPM)), a mean

diurnal variation (MDV) approach, a multiple imputa-

tion method (MIM), and a terrestrial biosphere model

(BETHY). Minor variants of two of the NLR methods

and the BETHY model were also assessed.

A comprehensive overview of the individual

techniques and their performance is given in Table 3.

The following sections complement this table by

describing the basic principles of the different

methodologies.

3.2. Basic principles

3.2.1. Non-linear regressions (NLRs)

The non-linear regressions are based on parameter-

ized non-linear equations which express (semi-)empiri-

cal relationships between the NEE flux and

environmental variables such as temperature and light.
Each technique (Falge et al., 2001; Hollinger et al.,

2004; Barr et al., 2004; Desai et al., 2005; Richardson

et al., 2006b; Noormets et al., 2007) uses one equation

for the ecosystem respiration (ER) and one equation for

the light response of the ecosystem, which is the gross

primary production (GPP). NEE is estimated as

NEE = GPP � ER with GPP = 0 at night. The para-

meterized equations are fit to the observed data and then

used to fill missing NEE values.

The modeled relationships of ER vary from

technique to technique and are specified in Table 3.

Most common are semi-empirical equations with an

exponential or logistic dependence on temperature. The

NLR_FM technique implemented the seasonal depen-

dence of ER via a second-order Fourier function.

Details of the formulas used for filling ER data are given

in Appendix A.3.

The response of GPP to the photosynthetic photon

flux density PPFD is modeled using the rectangular

hyperbola:

GPP ¼ f ðPPFDÞ ¼ b1PPFD

PPFDþ b2

;

where b1 and b2 are the regression parameters (Michae-

lis and Menten, 1913; Falge et al., 2001) which are

related to the maximum ecosystem photosynthetic

capacity and the half-saturation point of PPFD at which

GPP = 0.5b1.

The regression parameters are only kept constant for

a certain period of time to accommodate the variation

over the year. This time window varied from technique

to technique (see Table 3).

In a companion paper (Desai et al., submitted for

publication), the NEE partitioning into GPP and ER of

the NLR techniques but also of UKF, ANN_PS, LUT,

MDV, SPM, and BETHY has been further investigated.

3.2.2. Dual unscented Kalman filter (UKF)

The UKF was developed for time series where the

data are auto-correlated (Gove and Hollinger, 2006). It

is a two-step recursive predictor–corrector method that

uses the noisy observed data to continuously adjust the

parameters of the non-linear regression equations (see

Section 3.2.1). In a prediction step the filter uses the

regression equations to predict the next NEE data point

(state). It then combines this predicted value with the

observed value to optimally adjust the previous

parameters and NEE states. This recursion is then

applied at each successive time period and leads to time-

varying parameter estimates for NEE over the whole

year. The UKF was run with the same values for process
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Table 3

Overview of the 15 gap-filling techniques with their main characteristics, complementary to the basic principles described in Section 3.2

Technique (Variants) NLR_AM NLR_EM NLR_FCRN (STD, MOD) NLR_FM (AD, OLS) NLR_LM UKF_LM BETHY (12, ALL)

Methodology Non-linear

regression

Non-linear

regression

Non-linear regression Non-linear regression Non-linear regression Kalman filter Terrestrial biosphere model

Description Classic NLR Classic NLR Additional linear

regression with

time LR(t)

Seasonal ER dependency Classic NLR Dual unscented

Kalman filter

Biosphere energy-transfer

hydrology model

Participant Asko Noormets Ankur Desai Alan Barr Andrew Richardson Eva Falge David Hollinger,

Jeff Gove

Jens Kattge

Reference Noormets

et al. (2007)

Desai et al. (2005) Barr et al. (2004),

Fluxnet Canada

Res. Network

Hollinger et al. (2004) and

Richardson et al. (2006b)

Falge et al. (2001) Gove and Hollinger

(2006)

Knorr and Kattge (2005)

Meteo requirement � � � � � � �
Process based � � � � � � �
Auto-correlation �
Noise conservation �

Data dependencies

nighttime

ER = f(Ta);

Arrhenius

ER = f(Ts);

Eyring

ER = a(t)f(Ts);

logistic equation

ER = f(DOY);

second-order Fourier

ER = f(Ts);

Lloyd–Taylor

ER = f(Ts); Lloyd–

Taylor

PPFD, Ta, Rh, SWC,

LAI, LE, height of canopy

and tower, soil type,

texture, and depth

Data dependencies

daytime

GPP = f(PPFD);

Michaelis-Menten

GPP = f(PPFD);

Michaelis-Menten

GPP = b(t)f(PPFD);

Michaelis-Menten

GPP = f(PPFD);

Michaelis-Menten

GPP = f(PPFD);

Michaelis-Menten

GPP = f(PPFD);

Michaelis-Menten

Time window Monthly fixed Moving window

(30–60 day

adaptive length)

First: annual NLR

(Ts, PPFD)

Monthly fixed Bimonthly fixed Recursive single steps Parameterization for

ALL: all available data

Second: 100-valid

mov. data points

LR(t)

Parameterization for

12: 12 days of data

Remarks Simultaneous fit

of daytime and

nighttime data

Additional t-test STD: linear

interpolation of

gaps �4 hhs.

MOD: zero

intercept and

no interpolat

Parameter estimation,

AD: absolute deviation,

OLS: ordinary least

squares

During daytime:

48 C-Ta-classes

air temperature

classes

Winter dormancy:

random walk plus noise

Modeled NEE for

whole year

Framework SAS IDL Matlab SAS PV-Wave, Fortran R, Fortran Fortran, IDL

Runtime (per single run) Medium (30 s) Medium (30 s) Fast (5 s) Medium (30 s) Fast (5 s) Fast (5 s) Very slow (2–6 h)

Ease of implementation Medium Medium Medium Medium Medium Complex Complex

Performance hh daytime Good Good Good Good Good Medium Good

Performance hh nighttime Low Low Low Low Low Low Low

Performance daily

daytime

Good Good Good Good Good Good Good

Performance daily

nighttime

Medium Medium Medium Medium Medium Low Medium

Reliability of annual sum Medium Low (negative bias) Medium Medium Good (above average) Low (long gaps) Low (site bias)
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Technique (Variants) ANN_BR ANN_PS ANN_S LUT MDS SPM MDV MIM

Methodology Artificial neural

network

Artificial neural

network

Artificial neural

network

Look-up table Moving ‘‘LUT’’ 3D continuous ‘‘LUT’’ Diurnal interpolation Monte Carlo technique

Description Bayesian network

regularization

Date pre-sampling

and network smoothing

Standard Fixed look-up table Marginal distribution

sampling

Semi-parametric model Mean diurnal

variation

Multiple imputation

method

Participant Rob Braswell Dario Papale Antje Moffat Eva Falge Markus Reichstein Vanessa Stauch Eva Falge Dafeng Hui

Reference Braswell et al.

(2005)

Papale and Valentini

(2003)

Moffat (in

preparation)

Falge et al.

(2001)

Reichstein et al.

(2005)

Stauch and Jarvis

(2006)

Falge et al. (2001) Hui et al. (2004)

Meteo requirement � � � � (�) � (�)

Process based

Auto-correlation (�) (�) (�) � � � �
Noise conservation (�) (�) (�) �

Data dependencies

nighttime

All available

meteo data

Ta, Ts, Rh, SWC plus

fuzzies for DOY

All available meteo

data plus fuzzies for

HOD and DOY

35 Ts classes Look-up of similar

meteo conditions of

margin: Rg < 50 W m�2,

Ta < 2.5 8C, VPD

< 5.0 h Pa

Cubic spline

interpolation of

semi-parametric model

f(Rg, T, t)

f(NEE, t) All available meteo

plus NEE

Data dependencies

daytime

Rg, Ta, Rh, SWC,

sin, cos

23 PPFD classes

and 35 Ta classes

Same as above

Time window Full year Pre-sampling into equal

subsets: 28 periods

with three daytime slots

Full year Bimonthly Sliding window

� n � 7 days,

with n � 1 to find data

within margin

Continuous Sliding window of

daytime: �14-days,

nighttime: �7-days

Full year

Remarks Time series

filtering

Network smoothing by

sampling of networks

and training data,

averaging over 6 best

Algorithm varies for

incomplete meteo,

see reference

Introduces uncertainties to

emulate natural variability

Framework Matlab Matlab C++ PV-Wave, Fortran PV-Wave Matlab PV-Wave, Fortran SAS

Runtime (per single run) Medium (1 min) Slow (10 min) Medium (1 min) Medium (30 s) Fast (1–5 s) Very slow (2 days) Fast (1 s) Fast (1–2 s)

Ease of implementation Complex Complex Complex Easy Easy Complex Easy Easy

Performance hh daytime Good (above

average)

Good (above average) Good (above

average)

Good Good Good Medium Medium

Performance hh

nighttime

Low Low (above average) Low Low Low Low Low Low

Performance daily

daytime

Very good Very good Very good Good Very good Good Medium Medium

Performance daily

nighttime

Medium Medium (above

average)

Medium Medium Medium Medium Medium Low

Reliability of

annual sum

Good (above

average)

Good Low (outliers) Good Good Good Medium Low (outliers)

First part: Methodology information with a short description, authors, and main literature reference. Second part: Classification according to the following four classes: requirement of meteorological input data, process-based

theoretical assumptions, exploitation of temporal auto-correlations, and conservation of noise in the flux data. Third part: Algorithm information with the dependencies on the meteorological input data, separated into daytime

and nighttime data if needed, time window, special remarks, framework (programming language), typical runtime on a Pentium PC, and ease of implementation. Fourth part: Comparison evaluation of the performance as

discussed in Section 4 for the half-hourly (hh) and daily time step, separated into daytime and nighttime data, and evaluation of the reliability of the annual sum.

Table 3 (Continued )
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and measurement noise variances as given in Gove and

Hollinger (2006) and not specifically ‘‘tuned’’ to the

sites evaluated here. Kalman filtering takes a probabil-

istic interpretation to the estimation of the unknown

system states (here NEE). As a consequence, any

Kalman-based filter will not try to ‘‘match’’ the

measurements unless the ratio of system to process

noise variances is reduced towards zero (thus weighting

the measurements in preference to the model predic-

tions in the update step); in essence, the assumption is

that of perfect observational data. In the presence of

gaps, the filter is still estimating the probability density

of the states, not the missing measurements.

3.2.3. Artificial neural networks (ANNs)

The ANNs are purely empirical non-linear regres-

sion models. An ANN consists of nodes connected by

weights that are the regression parameters (Bishop,

1995; Hagan et al., 1996; Rojas, 1996). The network is

trained by presenting it with sets of input data (here, the

meteorological variables) and associated output data

(here, NEE). All techniques evaluated use the classical

back-propagation algorithm where the training of the

ANN is performed by propagating the input data

through the nodes via the weighted connections and

then back-propagating the error and adjusting the

weights so that the network output optimally approx-

imates NEE. After training, the underlying dependen-

cies of NEE on the meteorological input variables are

mapped onto the weights and the ANN is then used to

predict the missing NEE values.

The performance of an ANN is influenced by the

following criteria:
� Q
uality of the training dataset: The ANN can only map

and extract information present in the NEE and

accompanying meteorological dataset. Therefore,

factors such as completeness and accuracy are essential

to the ANN performance. Additional information such

as time can be added as a fuzzy variable.
� N
etwork architecture: The more degrees of freedom

(nodes, weights), the better the mapping of the

training dataset but this is achieved at the cost of the

ability to generalize.
� N
etwork training: The training process requires an

appropriate learning rate (weight adjustment steps)

and a stopping criterion to avoid overtraining.

Different algorithms have been developed to address

these criteria and we tested several different approaches

to training. ANN_S (Moffat, in preparation) used the

complete training dataset for the training of one network
with two hidden layers. The ANN_PS (Papale and

Valentini, 2003) pre-sampled the training datasets and

averaged the results over multiple trained networks of

different architectures. The ANN_BR (Braswell et al.,

2005) used a stochastic Bayesian algorithm for the

regularization of the network training.

3.2.4. Look-up tables and further developments

In a look-up table, the NEE data are binned by

variables such as light and temperature presenting

similar meteorological conditions, so that a missing

NEE value with similar meteorological conditions can

be ‘‘looked up’’. The standard look-up table (LUT)

consists of fixed periods over a year with corresponding

fixed intervals for the variables (Falge et al., 2001).

An enhancement to the standard LUT is marginal

distribution sampling (MDS). Here similar meteorolo-

gical conditions (of a fixed margin) are sampled in the

temporal vicinity of the gap to be filled (Reichstein et al.,

2005). Hence, this moving look-up table technique is able

to exploit the temporal auto-correlation structure of NEE.

The semi-parametric model technique (SPM) can be

seen as a three-dimensional, non-linear look-up table

sorted with environmental variables of interest (global

radiation, soil temperature) and time and is therefore a

continuous representation of the response of NEE to

these variables. The underlying semi-parametric rela-

tionships are defined by three-dimensional cubic splines

estimated within a weighted non-linear least squares

optimization framework (Stauch and Jarvis, 2006).

3.2.5. Mean diurnal variation (MDV)

MDV is an interpolation technique where the missing

NEE value for a certain 0.5-h is replaced with the

averaged value of the adjacent days at exactly that time

of day (Falge et al., 2001).

3.2.6. Multiple imputation method (MIM)

MIM uses multivariate correlation to replace the

missing NEE data with several simulated (imputed)

values (Hui et al., 2004). The Markov Chain Monte

Carlo algorithm is used to generate the imputed data

sets. Then these sets of plausible values are analyzed

using normal statistical metrics. Finally, the results are

pooled by averaging to provide the missing NEE data.

3.2.7. Biosphere energy-transfer hydrology model

(BETHY)

BETHY (Knorr and Kattge, 2005) is a process-based

model developed to calculate NEE, water and energy

fluxes of the terrestrial biosphere and is not strictly a

gap-filling technique. In addition to the meteorological
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data provided in the 10 benchmark datasets, it uses the

daily leaf area index (LAI) derived from remote sensing

data, soil type, texture, and depth, canopy height, and

tower height as model inputs. Model parameters are

optimized against observed fluxes of NEE and latent

energy (LE), considering prior information about

parameter values to constrain these within reasonable

ranges. The optimized parameter sets are then used to

model NEE for the whole year.

The BETHY model was evaluated to test the

feasibility of using a more complete biophysical model

for gap filling. Two scenarios were evaluated; first

BETHY model parameters were estimated from all of the

observed data, and secondly, the parameters were

estimated using only 12 days of observed data, chosen

to represent seasonality. The NEE results for the two

optimizations were simply replicated 50 times to provide

data for the different gap length scenarios and hence,

BETHY results are not strictly comparable to the others.

4. Results

4.1. Site dependency of the techniques’

performance

The differences in the RMSE performance of the

gap-filling techniques for the 10 benchmark sets
Fig. 1. Site dependency of the techniques’ performance for half-hourly data

the 10 benchmark datasets. The symbols denote the RMSE performance o
(calculated over all 50 permutations of the gap length

scenarios) in Fig. 1 shows that most of the techniques

worked nearly equally well. This finding expands on the

results of Falge et al. (2001) who investigated the

artificial gap-filling performance of MDV, LUTs, and

NLR techniques for four sites (conifers, deciduous

forest, crop, and grassland) and found that the

performance of these techniques was also similar at

these four contrasting sites.

Results from an analysis of variance (ANOVA) of

the individual RMSE, with ‘‘site’’ and ‘‘technique’’ as the

main effect, are given in Table 4. A Bonferroni multiple

comparison test, which conservatively controls the

overall Type I error rate, was used to assess differences

in performance among techniques and across sites. This

analysis indicated that nine of the techniques (the

methods followed by the letter ‘‘G’’ in the ‘‘Daytime’’

panel of Table 4) consistently out-performed any of the

other techniques during the day and although the three

ANNs consistently performed best for all 10 datasets

(Fig. 1), they are not significantly better than the other six

techniques with the letter ‘‘G’’. At nighttime however, by

the same test, almost all the techniques performed more

or less equally (the 14 methods followed by the letter ‘‘E’’

in the ‘‘Nighttime’’ panel of Table 4).

The site dependency of additional metrics (R2, the

absolute and relative RMSE and the bias error, BE) is
, separated into daytime (left) and nighttime (right) data and sorted by

f the individual techniques as given in the legend.
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Table 4

Ranking of the techniques according to their mean RMSE over all 10 benchmark datasets

Ranking Daytime Nighttime

Technique Mean RMSE Bonferroni grouping Technique Mean RMSE Bonferroni grouping

1 ANN_BR 2.82 G ANN_PS 1.75 E

2 ANN_S 2.93 G, F NLR_FCRN_MOD 1.79 E, D

3 ANN_PS 2.98 G, F, E NLR_LM 1.80 E, D

4 NLR_FCRN_MOD 3.24 G, F, E, D NLR_FCRN_STD 1.81 E, D

5 NLR_FCRN_STD 3.25 G, F, E, D LUT 1.81 E, D

6 MDS 3.31 G, F, E, D NLR_EM 1.81 E, D

7 SPM 3.31 G, F, E, D ANN_BR 1.81 E, D

8 NLR_EM 3.31 G, F, E, D MDS 1.81 E, D

9 BETHY_ALL 3.33 G, F, E, D ANN_S 1.82 E, D

10 BETHY_12 3.42 E, D, C NLR_FM_OLS 1.83 E, D

11 NLR_LM 3.47 D, C SPM 1.83 E, D

12 NLR_AM 3.50 D, C NLR_FM_AD 1.83 E, D

13 NLR_FM_OLS 3.50 D, C NLR_AM 1.86 E, D

14 NLR_FM_AD 3.54 D, C BETHY_ALL 1.89 E, D, C

15 LUT 3.61 D, C BETHY_12 1.91 D, C

16 UKF_LM 3.74 C, B UKF_LM 2.01 C, B

17 MDV 4.12 B MDV 2.11 B

18 MIM 4.76 A MIM 2.36 A

Data were analyzed by analysis of variance (ANOVA) with ‘‘site’’ and ‘‘technique’’ as main effects. Techniques with the same letter in the

Bonferroni Grouping column are not significantly different (95% confidence) based on a multiple comparison test.
shown in Fig. 2 with all gap-filling techniques combined

as boxplots. In this study, we found that R2 and the

absolute and relative RMSE have a higher variability

from site to site than among the techniques for one

specific site. This was confirmed by the ANOVA

analysis indicating much larger site factors than

technique factors. We also found that the coefficient

of determination was correlated not with absolute but

with the relative RMSE, which means that the gap

filling of sites with higher flux amplitudes will have

larger induced errors.

The BE did not show a pronounced site or

technique effect and will be discussed in more detail

in the context of the annual sum reliability (see

Section 4.6). Other metrics such as modeling

efficiency (Janssen and Heuberger, 1995) were also

calculated but yielded similar results to the relative

RMSE and R2.

4.2. Uncertainty analysis of the sites’ residuals

The variance of the difference between model results

(artificial gaps) and data (observed flux) provide an

estimate of the random uncertainty in the data; in fact in

the theoretical case of a perfect model, the residuals

between the model and data would fully characterize

this uncertainty (e.g., Stauch et al., in press; Richardson

et al., 2007). Recent investigations (Hollinger and

Richardson, 2005; Richardson et al., 2006a) showed
that all flux measurements are subject to substantial

uncertainty (random error), that this uncertainty may be

modeled as a double exponential distribution with an

associated maximum likelihood scale parameter

equivalent to the MAE, and that the magnitude of the

error increases with the flux (flux data are hetero-

scedastic).

Fig. 3 shows the MAE performance of the gap-filling

techniques (model residuals) and uncertainty estimates

calculated from the relationship for forested sites in

Table 4 of Richardson et al. (2006a). Because this

relationship was obtained from paired observations of

successive days which overestimates the uncertainty by

	25% relative to the two-towers approach (Hollinger

and Richardson, 2005), the uncertainty estimates are

reduced by this amount.

The MAE from the gap-filling techniques were

generally at or below the estimates from Richardson

et al. (2006a) and there was a significant correlation

during daytime (R2 = 0.75) and nighttime (R2 = 0.8)

between the lowest MAE of the techniques (best

model) and the uncertainty estimates. Richardson and

Hollinger (2005) noted that random flux measurement

uncertainty, which cannot be captured by models

because of its stochastic nature, placed an upper limit

on the level of agreement between measured and

modeled (gap-filled) fluxes. This suggests that the gap-

filling techniques are already at or very close to the

random error (noise limit) in the data and that
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Fig. 2. Site dependency of the techniques’ performance for half-hourly data, separated into daytime (left) and nighttime (right) data and sorted by

the 10 benchmark datasets. The results of the coefficient of determination R2, the absolute and relative RMSE (reversed axis), and the bias error are

shown with the 18 individual technique results combined in boxplots. The boxplot is composed of the median (solid line), the lower and upper

quartile bounds (box), the 10th and 90th percentile (markers), and the 5% and 95% percentile (dots).
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Fig. 3. Uncertainty estimates (cross) and boxplot of the techniques’ MAE performance for the 10 benchmark datasets, separated into daytime (left)

and nighttime (right) data. The boxplot is drawn as in Fig. 2.
essentially all of the information available in the half-

hourly data has been recovered by the best of the

techniques.

Sites BE1 (Vielsalm) and FR1 (Hesse) had the lowest

nocturnal correlation of R2 < 0.25 (Fig. 2) and the
Fig. 4. Overall performance of the techniques presented as determination c

separated into daytime and nighttime data. The symbols denote the individ
highest nocturnal error (absolute and relative RSME in

Fig. 2 and MAE in Fig. 3). For these two sites, the MAE

of the model results as well as the uncertainty estimates

were in the same range (	2.5 g C m�2 day�1) as the

mean night flux. This finding suggests that during
oefficient R2 vs. RMSE for the half-hourly and daily time step, again

ual techniques as given in the legend.
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nighttime at these two sites the real flux signal is buried

under the measurement noise.

Interestingly, the mean nocturnal errors generated by

the gap-filling techniques at the six European sites were

lower than the uncertainty estimates; this may be

attributed to site-specific differences in the way in

which uncertainty scales with flux magnitude or
Fig. 5. Case study of the long gap scenario for benchmark dataset IT3_2002

course of observed (gray) and predicted (black) half-hourly NEE flux for the fi

due to real gaps in the observed data. (B) Scatter plot of half-hourly NEE value

(black) dots. (C) Annual course of observed daily NEE sums (gray dots) and p

sums (predicted vs. observed).
differences in the way that the Carboeurope IP data

were screened and filtered (for example, the stationarity

tests of Foken et al., 2004, were not used in the data

analyzed by Richardson et al., 2006a,b). This dis-

crepancy and the statistical properties of the uncertainty

are discussed more fully in a companion paper

(Richardson et al., 2007).
and four techniques, NLR_LM, ANN_PS, MDS, and MDV: (A) Daily

rst 5 days of a 12-day-long gap (scenario L0). Missing nighttime data is

s (predicted vs. observed), separated into daytime (gray) and nighttime

redicted daily NEE sums (black dots). (D) Scatter plot of the daily NEE
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4.3. Overall performance of the gap-filling

techniques

To evaluate the overall performance of the techni-

ques, the gap-filling results were averaged over the 10

benchmark datasets and all 50 artificial gap scenarios

for the half-hourly time step (500 data points) and over

the 10 benchmark datasets and the medium and long

gap length results for the daily sums (20 data points).

The results are shown as R2 versus RMSE in Fig. 4.

Since the coefficient of determination R2 and the RMSE

showed an almost linear dependence, the overall

performance given in Table 3 was judged based only

on R2 which was labeled according to the following four

clusters: ‘‘Very good’’ (R2 > 0.85), ‘‘Good’’ (0.75 < R2

� 0.85), ‘‘Medium’’ (0.5 < R2 � 0.75) and ‘‘Low’’

(R2 � 0.5).

For the half-hourly time step, the three ANNs

(ANN_BR, ANN_S, and ANN_PS) yielded highest R2

and lowest RMSE during daytime, while the MDV,

UKF, and MIM techniques behaved in an opposite

manner. The other techniques were distributed between

these two extremes. During nighttime, both R2 and

RMSE decreased relative to the daytime performance

for all techniques and showed only low correlations

(R2 < 0.5).
Fig. 6. Sensitivity of technique performance to gap length, separated for day

individual techniques for the four different gap lengths: one single 0.5-h (ve

(long). For BETHY, the white bar corresponds to BETHY_12 and the dark
The daily performance (DSum) was better for all

techniques during daytime and nighttime due to

averaging out some of the random noise and resulted

in a medium to good confidence in the daily sum

prediction.

4.4. Visualization of the gap-filling results

Despite the similar performance of the techniques,

the individual ‘‘look’’ of the filled gaps on the half-

hourly and daily sum basis is quite different. Fig. 5

shows a case study for the long gap scenario of

dataset IT3_2002 with four representative techniques

(NLR_LM, ANN_PS, MDS, and MDV) and illustrates

some typical characteristics of the methodologies.

The daily course of half-hourly predicted and

observed NEE flux for a 12-day long gap is shown in

Fig. 5A. The NLR technique showed little day-to-day

variation and constant values at night (driven only by

slowly changing temperatures). The ANN, however,

seemed more sensitive to small changes in the provided

meteorological variables or auto-correlations in the

data. The small peak at night–day transition is generally

reproduced by the ANNs and is attributed to a morning

‘‘flush’’ of CO2 from the canopy; because this signal

was present in the training datasets, it appeared in the
time (left) and nighttime (right) data. The bars denote the RMSE of the

ry short), four full hours (short), 1.5 days (medium), and 12 full days

bar to BETHY_ALL (for more information see Section 4.5).
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gap-filled values, too. MDS worked better in responding

to the meteorological changes than the basic LUT due to

its marginal sampling. But MDV, since it relied only on

the interpolation of adjacent days for this 12-day gap

and did not make use of ancillary meteorological

drivers, was not able to predict any intermediate

changes in the flux.

Due to the significantly reduced variation during

nighttime resulting from the difference between the

relatively constant estimated values and noisy nighttime

data, the nighttime scatter plots of NLR_LM, ANN_PS,

and MDS shown in Fig. 5B have a horizontal shape. In

contrast, MDV reproduced the night fluctuations of the

observed flux and shows an even distribution of the

scatter. The same is true for MIM (not shown).

The predicted and observed daily sums of the long

gap scenarios are shown in Fig. 5C with the

corresponding scatter plots in Fig. 5D. There were

significant differences between the techniques with

major discrepancies for individual days. ANN_PS and

MDS were best at predicting the daily sums due to the

ability to react to sudden meteorological changes even

in the middle of 12 day long gaps. The differences

between the techniques were much less pronounced for

the medium size gaps (not shown).

4.5. Sensitivity of technique performance to gap

length

Another important aspect is the differences in

performance of the techniques as a function of gap

length. The same subset of artificial gaps for each gap

length was chosen to avoid effects caused by different

positions of the gaps. The results were averaged over the

10 benchmark datasets and 10 permutations (20 data

points).

The RMSE increased and hence the performance of

the gap filling decreased with gap length (Fig. 6). This

result must be expected from potential (and unknown)

changes in the ecosystem properties, particularly as

related to canopy development and senescence (Stauch

and Jarvis, 2006; Richardson and Hollinger, 2007).

Some techniques (the two NLR_FCRN variants, MDS,

SPM, and MDV) had a larger increase in RMSE moving

towards the long gap type during daytime than the other

techniques. During nighttime, the decrease in perfor-

mance with increasing gap length was less marked than

during daytime for all techniques.

For the very short gap scenarios, NLR_FCRN_STD

showed very good performance during daytime due to

its linear interpolation of the short gaps. During

nighttime, this interpolation seemed to have a negative
effect, but looking at the individual site results (not

shown), this linear interpolation led to a slightly better

(reduced) RMSE for most sites but much greater error at

site BE1, leading to an overall increase in RMSE.

The process-based model BETHY generated mod-

eled NEE results independent of the gap length

scenarios but using two schemes for parameter

optimization: once with all available observed data

(BETHY_ALL, white bar, Fig. 6), and once with only

12 (representative) days of observed data (BETHY_12,

dark bar, Fig. 6). There was only a slight decrease

in performance moving from BETHY_ALL to

BETHY_12; BETHY_12 had a remarkably good

performance considering only 12 days out of the whole

year were used.

4.6. Annual sum bias of the gap-filling techniques

Bias in the annual sum prediction is an important

criterion for the characterization of the gap-filling

techniques. The annual sum offset DASum can be

estimated from the bias error on a half-hourly or daily

time step (see Section 2.5).

Fig. 7A shows the half-hourly bias error as a function

of technique for the very short gap length scenario

calculated for all 10 benchmark datasets and all 10

permutations (100 data points), separated for daytime

and nighttime data. The span between the lower and

upper quartiles (boxes in Fig. 7) for most techniques

was less than 0.25 g C m�2 day�1. Results were more

variable for some of the techniques including ANN_S

due to outliers (high bias of a single permutation) and

for MIM and BETHY due to a site bias that was

enhanced for BETHY_12 by using only 12 days for

parameter optimization.

Fig. 7B shows the bias error of the daily sums for the

medium and long gap length scenario, calculated for

the 10 benchmark datasets (10 data points). Here the

quartiles of the bias error were predominantly less than

0.25 g C m�2 for the medium gaps and less than

0.30 g C m�2 for the long gaps. Most techniques show a

positive bias for the medium and long gaps resulting in a

positive annual sum offset. Only NLR_EM had a

consistent and persistent negative bias on half-hourly

and daily basis. NLR_FCRN_MOD, UKF_LM, MIM,

and BETHY_12 produced more variable results than the

other techniques for the long gap length scenarios.

To summarize our evaluation of bias, the annual sum

reliability of the techniques stated in Table 3 was

classified ‘‘good’’ if the quartiles of the bias estimates

were less than 0.25 g C m�2 day�1 on a half-hourly and
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Fig. 7. (A) Bias error of the gap-filling techniques in the prediction of half-hourly NEE: boxplot of the very short gap length scenario calculated for

all 10 benchmark datasets and all 10 permutations (100 data points), separated into daytime (left) and nighttime (right) data. The boxplot is drawn as

in Fig. 2. (B) Bias error of the gap-filling techniques in the prediction of the daily NEE: boxplot for medium and long gap length scenario calculated

for the 10 benchmark datasets (10 data points). The boxplot is drawn as in Fig. 2.
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Table 5

Deviations (bias error) of the annual sum NEE predictions from the median over all techniques (in g C m�2), shown for daytime, nighttime, and all data

Site year Dataset No. of

observations

No. of

gaps

NLR_

AM

NLR_

EM

NLRFCRN_

STD

NLRFCRN_

MOD

NLR_

FM_AD

NLR_FM_

OLS

NLR_

LM

UKF_

LM

ANN_

BR

ANN_

PS

ANN_S LUT MDS SPM MDV MIM BETH_

12

BETH_

ALL

be1_2000 Daytime 7,709 1,290 3.2 �12.5 �0.7 �13.2 1.9 �0.3 5.9 8.3 �12.1 1.3 6.5 1.6 �11.6 �7.9 �7.5 0.0 �13.7 �2.3

Nighttime 4,810 3,711 2.1 �14.5 0.0 0.8 �11.5 �1.2 5.5 3.2 0.0 �0.4 17.1 9.3 �0.3 10.7 10.9 S25.8 S65.2 S44.1

All data 12,519 5,001 4.4 S27.8 �1.6 �13.2 �10.5 �2.4 10.6 10.7 �13.0 0.0 22.8 10.0 �12.7 1.9 2.5 S26.6 S79.8 S47.3

be1_2001 Daytime 7,827 1,152 �2.0 �3.2 3.3 �1.6 0.0 �2.6 �1.8 12.0 0.6 7.2 �2.5 �5.9 11.6 �0.1 20.9 �13.5 �4.7 1.2

Nighttime 4,460 4,081 6.7 �17.0 0.0 5.8 �13.3 0.3 13.5 2.6 1.7 �0.1 �9.3 16.2 �2.4 4.5 14.3 �23.1 �19.2 S50.2

All data 12,287 5,233 0.3 �24.6 �1.1 �0.2 �17.7 �6.7 7.4 10.1 �2.0 2.7 �16.1 5.9 4.8 0.0 30.8 S41.0 S28.2 S53.4

de3_2000 Daytime 7,379 1,816 �9.9 �14.5 0.9 �19.0 �15.5 �16.3 2.7 6.5 �22.4 2.0 17.5 �6.0 0.0 �10.4 �14.1 3.2 32.4 5.3

Nighttime 4,073 4,252 23.1 �18.1 �1.0 8.0 �24.5 �7.9 2.1 66.0 �6.2 �2.5 51.6 3.5 �13.0 0.0 10.7 �10.0 48.8 0.0

All data 11,452 6,068 15.7 S30.1 2.4 �8.5 S37.5 �21.7 7.3 75.1 S26.1 2.0 71.5 0.0 �10.5 �7.9 �0.9 �4.3 83.7 7.9

de3_2001 Daytime 7,372 1,679 � �7.1 7.5 �7.2 21.5 22.7 �20.2 �19.4 0.0 5.8 17.8 �20.4 5.0 �7.0 10.1 �12.1 �4.9 �12.8

Nighttime 4,359 4,110 � �13.4 �2.0 3.2 �10.2 1.0 3.4 38.6 �5.9 �5.6 30.9 1.4 �1.9 1.1 0.0 5.8 17.8 3.6

All data 11,731 5,789 � �20.7 5.3 �4.2 11.1 23.4 �16.9 19.0 �6.1 0.0 48.5 �19.2 2.9 �6.1 9.9 �6.6 12.7 �9.4

fi1_2001 Daytime 7,591 1,871 �3.1 �6.4 0.0 �2.8 �3.5 �1.9 �2.1 0.1 �5.2 0.7 �1.6 �2.2 4.2 19.8 2.1 8.8 �5.1 3.8

Nighttime 3,645 4,413 �3.5 �8.8 1.9 �2.5 �3.6 1.7 3.6 11.0 �2.8 �3.8 0.0 4.8 �0.8 46.7 8.2 �11.6 5.7 5.7

All data 11,236 6,284 �8.0 �16.6 0.4 �6.8 �8.6 �1.6 0.0 9.5 �9.6 �4.6 �3.1 1.0 1.9 65.0 8.8 �4.3 �0.9 8.0

fi1_2002 Daytime 7,881 2,097 �0.4 �10.2 2.1 �4.1 �6.2 �5.2 0.7 11.8 �5.0 3.3 1.6 �3.1 2.3 4.5 0.0 �15.1 6.8 �5.8

Nighttime 3,546 3,996 7.7 �11.8 �1.1 �1.4 �2.0 3.9 3.2 19.7 �6.0 0.0 11.6 1.6 �7.9 16.5 7.5 �10.2 10.4 �15.3

All data 11,427 6,093 6.3 �23.0 0.0 �6.5 �9.3 �2.3 2.9 30.4 �12.0 2.2 12.2 �2.5 �6.7 19.9 6.5 S26.3 16.2 �22.1

fr1_2001 Daytime 7,769 898 �0.5 �6.2 �0.4 �9.2 1.7 0.6 1.5 4.1 �2.0 �2.1 �7.7 0.0 5.0 15.6 �11.0 10.5 0.9 0.9

Nighttime 5,975 2,878 8.6 �18.5 �0.9 1.8 �15.1 �0.6 1.3 38.6 11.7 0.0 S44.5 0.8 0.3 0.8 �0.4 �1.8 �7.8 �7.8

All data 13,744 3,776 7.4 S25.5 �2.1 �8.2 �14.1 �0.7 2.0 41.9 8.9 �2.8 S53.0 0.0 4.6 15.6 �12.1 7.9 �7.7 �7.7

fr1_2002 Daytime 7,824 930 �2.8 �7.6 16.2 �4.6 �0.5 �4.6 3.4 2.3 0.0 �4.0 12.2 5.3 4.0 �1.2 �2.0 �3.7 8.6 3.8

Nighttime 5,827 2,939 1.5 �18.2 4.4 3.5 �15.3 0.6 �0.9 23.0 0.4 �3.6 65.8 2.5 0.0 5.7 �6.3 0.0 10.5 �0.3

All data 13,651 3,869 �3.8 S28.3 18.2 �3.5 �18.2 �6.5 0.0 22.8 �2.0 �10.1 75.5 5.3 1.4 1.9 �10.8 �6.2 16.6 1.0

fr4_2002 Daytime 7,384 1,169 �2.6 3.4 1.8 12.5 13.8 8.1 �4.7 �0.6 7.3 0.4 5.3 �5.9 4.6 0.0 �8.0 �4.2 �9.7 �1.6

Nighttime 3,806 5,161 17.8 �6.1 �8.4 13.9 0.0 11.0 11.9 19.5 27.2 �1.2 19.9 8.4 �4.2 �6.2 8.8 S35.8 S36.0 S28.0

All data 11,190 6,330 14.3 �3.6 �7.4 25.5 12.9 18.2 6.4 18.1 33.7 �1.7 24.3 1.6 �0.5 �7.0 0.0 S40.8 S46.6 S30.5

it3_2002 Daytime 7,839 1,279 1.1 �15.2 7.0 0.5 �9.4 �11.7 6.0 �3.3 �6.3 2.9 �15.9 4.2 0.0 7.1 �1.4 S35.7 6.8 16.8

Nighttime 4,141 4,261 8.2 S37.5 �7.2 2.5 �5.1 17.5 15.4 37.7 �0.5 �3.7 S32.0 4.0 �6.9 0.3 4.9 0.0 �15.4 23.3

All data 11,980 5,540 9.6 S52.4 0.0 3.3 �14.3 6.0 21.6 34.6 �6.5 �0.6 S47.6 8.4 �6.7 7.6 3.7 �35.4 �8.4 40.3

Outliers (>25 g C m�2) are printed in bold.



A.M. Moffat et al. / Agricultural and Forest Meteorology 147 (2007) 209–232 227
daily basis. Reasons for low reliability are noted in

parentheses.

For techniques with ‘‘good’’ reliability, the offset

in the annual sum prediction is generally <
25 g C m�2 year�1 for the 10 benchmark datasets

which had on average 30% real gaps (equivalent to

approximately 100 days of gap-filled data). This

estimate was examined on the real run results: in

addition to the 50 artificial gap scenarios, each

technique was also used to fill the actual gaps in the

10 benchmark datasets. Considering the differences in

the approaches of the various filling techniques, the

median of all techniques was assumed to be close to the

true annual sum, although this cannot be verified

without independent estimates of C exchange (from,

e.g., direct measures of biomass change). Many

techniques (NLR_LM, ANN_BR, ANN_PS, LUT,

MDS, and SPM) generated annual values that were

almost always within 25 g C m�2 year�1 of the median

with other techniques (Table 5), whereas others

(NLR_EM, UKF_LM, ANN_S, MIM, BETHY_12,

and BETHY_ALL) generated more extreme deviations

of up to 75 g C m�2 year�1.

Based on the techniques and site data examined here,

the effect of gap filling on the annual sums of NEE is

modest, with the techniques with ‘‘good’’ reliability

falling within a range of �25 g C m�2 year�1. This

estimate is comparable in magnitude to the uncertainty

(due to random measurement error) in gap filled annual

sums of NEE reported by Richardson et al. (2006a) and

Stauch et al. (in press), the sampling uncertainty reported

by Goulden et al. (1996), and the estimated uncertainty in

annual sums of GEE reported by Hagen et al. (2006).

5. Discussion

The five non-linear regression techniques

(NLR_AM, NLR_EM, NLR_FCRN, NLR_FM, and

NLR_LM) all showed a good overall RSME and R2

performance (Table 3, bottom). NLR_LM had very low

biases resulting in an above average annual sum

reliability and the three techniques NLR_AM,

NLR_FCRN, and NLR_FM had medium annual sum

reliability. NLR_EM showed persistent negative biases

due to the linear formulation of the Eyring function that

puts less regression weight on high respiration (night-

time NEE) values, leading to an underestimate of high

NEE values. Improvements to the fitting routine should

be implemented to ensure better reliability in predicting

the annual sum.

The UKF_LM showed an average performance with

large deviations of the bias for the long gap length
scenario and for the prediction of the actual gaps. The

filter as implemented here moved sequentially through

the data and thus did not utilize post-gap information in

the time series. A Kalman smoother moves through the

data set in both directions and would presumably yield

improved results.

The neural networks ANN_BR and ANN_PS

produced the best results with the lowest RMSE and

highest R2 values and low bias. Though ANN_S also

generated low RMSE and high R2 values, it lacked

annual sum reliability due to a few outliers which

contributed to a higher bias in the predicted fluxes. This

problem of bias outliers in the simple ANN_S indicates

that ANNs are complex to implement and require

regularization (as in ANN_BR) or smoothing (as in

ANN_PS) to ensure good reliability in the annual sums.

One solution for the problem of bias outliers in ANN_S

is averaging (smoothing) over 10 trained networks.

The basic look-up table (LUT) and the enhance-

ments, MDS and SPM, all showed a good performance

and good annual sum reliability.

The MDV technique had a medium but consistent

performance and reliability. For MDV, the method does

not make use of the ancillary meteorological data and

can be expected to have additional problems filling gaps

of more than 	3–7 days in length, as synoptic changes

in weather are strongly linked to changes in diurnal

cycles of photosynthesis and respiration (Baldocchi

et al., 2001b).

MIM showed a low to medium performance and

reliability, and further development of this technique is

needed before it can be recommended as a gap-filling

tool.

BETHY showed a good RMSE and R2 performance

even for the model run with only 12 days out of the

whole year, which hints at potential future adoption of

process-based models for the filling of very long gaps.

But at this stage BETHY cannot be recommended as a

standard gap-filling tool due to the somewhat larger

biases resulting in a low annual sum reliability.

Though most techniques (NLR_AM, NLR_FCRN,

NLR_FM, NLR_LM, ANN_BR, ANN_PS, LUT, MDS,

and SPM) performed well, these results show that there

were systematic differences between techniques and

that some techniques had significant shortcomings. This

highlights the importance of a standardized evaluation

method. The example of the very good results of

ANN_S with low RMSE and high R2 but low annual

sum reliability because of a broad range of bias

estimates, shows that RMSE and R2 are not sufficient

for the evaluation of a gap-filling tool and that an

assessment of the bias error is also required. We
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strongly recommend that researchers wishing to utilize

gap-filling techniques not considered here test them

against our standardized benchmark datasets and gap

scenarios. The 10 benchmark dataset and the keyfile are

available at http://gaia.agraria.unitus.it/database/gfc/.

The choice of a technique should be based on the

application, e.g., a simple non-linear regression method

will serve well for an annual sum estimate but an

artificial neural network will best reproduce the half-

hourly profile of the flux. Another important considera-

tion is the availability of the ancillary meteorological

data since only MDV, MDS and ANN_BR are able to

deal with missing meteorological data. When available,

however, these data will always help to improve the

accuracy of gap filled values. While long gaps continue

to present some challenges even in forested sites

(Richardson and Hollinger, 2007), alternative data

sources that may capture changes in the ecosystem

state, such as remotely sensed products from the

MODIS platform, may prove valuable.

The adoption of a standardized gap-filling protocol

across sites reduces the uncertainty in comparing annual

sums since the gap-filling techniques have different

mean biases. A standardized method will greatly

facilitate large-scale, multi-site syntheses such as those

now being pursued by Carboeurope IP and FLUXNET.

6. Conclusions

Fifteen current gap-filling techniques (and variants)

for estimating net carbon fluxes (NEE) were reviewed

and their gap-filling performance was evaluated based

on a set of 10 benchmark datasets from six forested sites

in Europe. The performance of the filling techniques

depended on the site, gap length, and time of day (day

versus night). Based on this analysis with artificial gaps

superimposed on real datasets, the relative differences

between techniques were smaller than anticipated, with

most techniques performing nearly equally well. The

finding that the residual error is at (or below)

independent estimates of uncertainty suggests that

there is little room for improvement on the best of the

gap-filling techniques evaluated here. While not perfect,

the best gap-filling techniques perform well enough that

model-data mismatch at the sites evaluated here can be

attributed almost exclusively to measurement uncer-

tainties rather than model uncertainties. The effect of

the gap filling on the annual sum was estimated to be

�25 g C m�2 year�1 for the benchmark datasets.

These results both confirm and extend the previous

gap-filling comparison of Falge et al. (2001), who

showed that different techniques performed almost
equally well and demonstrated the general utility of

non-linear regression techniques. However, we tested a

wider range of gap-filling techniques and, unlike Falge

et al. (2001) were able to distinguish differences

between techniques in RMSE and R2 performance and

annual sum bias among techniques.

Based on the results of this comparison, the

Carboeurope IP project and FLUXNET have adopted

the ANN_PS and MDS as standardized gap-filling

techniques (Papale et al., 2006). In this study, both

techniques showed a consistently good gap-filling

performance and low annual sum bias, and we

recommend their use in flux data syntheses and

comparison activities. The tools are available online

at http://gaia.agraria.unitus.it/database/.

Further work on the comparison of techniques

should be based not only on European forest sites but

also other vegetation types, such as wetlands, grassland,

crops, urban environment, and other climate zones, such

as arid or tropical. These may make an excellent

companion paper to the present analysis. Since the two

artificial neural networks (ANN_BR and ANN_PS)

were best in performance and annual sum reliability and

since the ANNs replicate underlying patterns in the

data, especially as related to key environmental driving

variables (and, unlike the NLR methods, without

making assumptions about the functional form of these

relationships), we anticipate that ANN performance

would also be good even in ecosystems different from

those studied here.
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Appendix A

A.1. Artificial gap scenarios

The 50 distinct artificial gap scenarios used in this

comparison are presented in Table A.1. These 50

scenarios were provided in a keyfile and superimposed

on the NEE data of each of the 10 benchmark datasets to

produce secondary datasets with artificial gaps. The

white space delimited ASCII keyfile had a one-line

header of the gap scenario names and 17,520 rows for

each half-hours of the year. The first column was the

half-hours of the year (‘hh’) and the next 50 columns

were the 50 different artificial gap scenarios (‘v0’ to

‘x9) with data flagged as artificial gap (‘1’) or no

restrictions (‘0’). The detailed superimposition scheme

is given in Table A.2. One additional scenario (‘r0’) had

no artificial gaps (only ‘0’s) to fill the real gaps in the

observed NEE data.

The starting point of each artificial gap was chosen

randomly, except that we blocked off periods before

and after each gap so that no two artificial gaps could

overlap one another. For the mixed gap scenarios, we

did not prevent gaps from overlapping, and the long

gaps (one per permutation) were distributed evenly

across the year over the 10 different permutations. The
Table A.1

Description of the five artificial gap length scenarios (‘v’, ‘s’, ‘m’, ‘l’, ‘x’)

Header Gap length Amount of half-ho

v0, . . ., v9 Very short 1 (0.5 h)

s0, . . ., s9 Short 8 (4 h)

m0, . . ., m9 Medium 64 (	1.5 days)

l0, . . ., l9 Long 576 (12 full days)

x0, . . ., x9 Mix of the above 400 v, 50 s, 6 m an

Table A.2

Superimposition scheme of the artificial gap filling for each 0.5-h of the 1

Half-hourly data availability Key Status

Observed NEE value 0 Observ

Observed NEE value 1 Artific

Missing NEE (�9999) 0 Real g

Missing NEE (�9999) 1 Real a

The four logical combinations of observed NEE data (presence or absence
keyfile and the 10 benchmark datasets can be

downloaded from http://gaia.agraria.unitus.it/data-

base/gfc.

A.2. Prefilling gaps in the meteorological data

Since most techniques required complete (gap free)

ancillary meteorological data and the emphasis of this

comparison was on the filling of NEE, complete sets

of gap-filled meteorological data were provided to the

participants. The datasets of the meteorological

measurements were filled only if more than 70% of

data was available; wind speed (WS), wind direction

(WD) and u* were not gap filled. Short gaps for global

radiation (Rg) and photosynthetic photon flux density

(PPFD) were filled by linear interpolation; longer gaps

were filled using an artificial neural network (ANN)

with all other meteorological data, as well as fuzzy

variables to characterize diurnal and seasonal pat-

terns, used as input drivers. For air temperature (Ta),

gaps up to 8 half-hours in length were linearly

interpolated; longer gaps were filled using mean

diurnal variation and a sliding window depending on

gap size. For soil temperature (Ts) and soil water

content (SWC), all gaps were linearly interpolated.

For precipitation, missing values were set to zero if

the data density was higher than 95% but if the data

density was lower than 95%, the entire column was set

to missing. The availability of the meteorological

variables for the 10 benchmark datasets is given in

Table A.3.
with 10 random permutations each (‘0’ to ‘9’)

urs Count of gaps Count of total hhs

1752 1752

219 1752

27 1728

3 1728

d 1 l gap 457 	1760

0 benchmark datasets in the year

Procedure

ed NEE value Available for gap-filling procedure

ial gap Not available! to be filled

ap Ignore or fill

nd artificial gap Ignore or fill

) and keyfile flag (available data or artificial gap).

http://gaia.agraria.unitus.it/database/gfc
http://gaia.agraria.unitus.it/database/gfc
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Table A.3

Availability of prefilled meteorological data for the 10 benchmark

datasets

Site Year Rg PPFD Ta Ts SWC Rh P

BE1 2000 � � � � � � –

2001 � � � � � � �

DE3 2000 � � � � � � �
2001 � � � � � � �

FI1 2001 � � � � – � –

2002 � � � � – � �

FR1 2001 � � � � – – �
2002 � � � � – – �

FR4 2002 � � � – – � �

IT3 2002 � � � � – � �
A.3. Ecosystem respiration (ER) equations

The ER equations given in the following are reduced

to their controlling variable and the regression para-

meters to emphasize their differences. The regression

parameters are written in Greek letters:

Arrhenius (Falge et al., 2001; Lloyd and Taylor,

1994)

f ðTÞ ¼ r1
r2ðð1=T ref Þ�ð1=TÞÞ

Eyring derived from the Arrhenius equation (Eyring,

1935)

f ðTÞ ¼ cT eðs1T�s2Þ=T

Lloyd–Taylor (Lloyd and Taylor, 1994)

f ðTÞ ¼ ’1 e’2=ð’3�TÞ

Empirical logistic function (Chen et al., 1999)

f ðTÞ ¼ a1

1þ ea2ða3�TÞ

Second-order Fourier (Hollinger et al., 2004;

Richardson et al., 2006b)

f ðD0Þ ¼ g1 þ g2sinðD0Þ þ g3cosðD0Þ þ g4sinð2D0Þ

þ g5sinð2D0Þ

In these equations, T is the temperature, D0 = 2p � D/366

where D is the day of the year, and c = k/h where k is the

Boltzmann’s constant and h is the Planck’s constant.
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