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a b s t r a c t

Eddy covariance flux towers measure net exchange of land–atmosphere flux. For the flux of

carbon dioxide, this net ecosystem exchange (NEE) is governed by two processes, gross

primary production (GPP) and a sum of autotrophic and heterotrophic respiration compo-

nents known as ecosystem respiration (RE). A number of statistical flux-partitioning meth-

ods, often developed to fill missing NEE data, can also be used to estimate GPP and RE from

NEE time series. Here we present results of the first comprehensive, multi-site comparison

of these partitioning methods. An initial test was performed with a subset of methods in

retrieving GPP and RE from NEE generated by an ecosystem model, which was also degraded

with realistic noise. All methods produced GPP and RE estimates that were highly correlated

with the synthetic data at the daily and annual timescales, but most were biased low,

including a parameter inversion of the original model. We then applied 23 different methods

to 10 site years of temperate forest flux data, including 10 different artificial gap scenarios

(10% removal of observations), in order to investigate the effects of partitioning method

choice, data gaps, and intersite variability on estimated GPP and RE. Most methods differed

by less than 10% in estimates of both GPP and RE. Gaps added an additional 6–7% variability,

dditional bias. ANOVA showed that most methods were consistent in

s in GPP and RE across sites, leading to increased confidence in

multi-site comparisons and syntheses. Several methods produced
but did not result in a

identifying difference

previously published
outliers at some sites, and some methods were systematically biased against the ensemble
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mean. Larger model spread was found for Mediterranean sites compared to temperate or boreal

sites. For both real and synthetic data, high variability was found in modeling of the diurnal RE

cycle, suggesting that additional study of diurnal RE mechanisms could help to improve

partitioning algorithms.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The terrestrial component of the global carbon cycle can be

divided in two large and opposing terms, both of which

represent aggregated ecosystem processes: gross primary

production (GPP) and total ecosystem respiration (RE). The

order of magnitude smaller imbalance between these two

fluxes, termed net ecosystem exchange (NEE), is considered to

be the primary source of observed interannual variability in

atmospheric accumulation of carbon dioxide (CO2) (Peylin

et al., 2005). Furthermore, understanding how plant and soil

processes impact this interannual variability requires quanti-

fying GPP and RE. However, it is currently not possible to

obtain direct, integrated observations of either GPP or RE,

because these processes represent a multitude of responses by

a combination of autotrophic and heterotrophic organisms.

Scaling from chamber level measurements to canopy level is

labor intensive and fraught with high sampling uncertainty.

The eddy covariance (EC) technique is the well-established

method to directly measure flux and NEE over a fetch larger

than typical plot level measurements (Baldocchi, 2003). Gaps

in NEE time series are inevitable due to operational and

micrometeorological constraints. Numerous methods have

been developed to fill the gaps due to observational and

micrometeorological constraints, and many of these also

decompose NEE into GPP and RE (Falge et al., 2001). In most of

the methods, errors in estimation of RE offset errors in GPP, so

gap filling of NEE by modeling GPP and RE has been largely

successful (Moffat et al., 2007).

Methods to partition NEE to its component fluxes, GPP and

RE, have also been developed independent of gap-filling

techniques as a way to assess carbon pathways in ecosystems.

At present, there is no standard method commonly in use

(Reichstein et al., 2005; Stoy et al., 2006). While many

partitioning methods typically rely on the concept of zero

GPP at night and strong correlation of GPP and RE to

environmental driving variables, such as temperature, water

availability and solar radiation (Law et al., 2002), newer

techniques, such as neural networks, which have few under-

lying assumptions regarding these relationships, have been

developed and are evaluated here. We also investigated

process-based ecosystem model inversion and advanced data

assimilation techniques which have only recently been

developed.

Despite advances in NEE partitioning, direct evaluation of

GPP and RE estimates has been scant. Previous studies have

tested multiple methods at a few sites (Stoy et al., 2006) or a

few methods at many sites (Falge et al., 2001; Law et al., 2002;

Richardson et al., 2006a; Reichstein et al., 2005). Analyzing NEE

time series from a boreal transition forest, Hagen et al. (2006)

reported that GPP estimates for a given year could vary by over

100 g C m�2 depending on the partitioning algorithm (neural
network vs. physiologically based) and fitting method (max-

imum likelihood vs. ordinary least squares) used. Evaluation

of GPP and RE at multiple sites with multiple methods has not

been performed. There is great interest in performing cross-

site comparison of GPP and RE. Without an evaluation of GPP

and RE methods across a range of sites, investigator-reported

values of GPP and RE for individual sites cannot be reasonably

used to compare values across multiple sites because it is not

known how the partitioning method employed may affect the

result.

The goal of this article is not to discuss mechanistic

evaluation of GPP and RE. To do this requires independent flux

observations from chambers, biometry, and models or

inversions, each of which is subject to its own set of errors

and uncertainties. Instead, our focus is on assessing the role of

model selection and data gaps on variability in GPP and RE

estimates derived from NEE time series. To accomplish this

assessment, we evaluated 23 different partitioning methods,

using 10 site years of CO2 flux data. These data, originally

compiled for a gap-filling intercomparison (Moffat et al., 2007),

come primarily from temperate forests sites in Europe.

Though not all kinds of ecosystems are tested, the sites

chosen span a reasonable range of variability seen in flux

tower time series.

Questions motivating this research are
1. W
hat is the inherent variability in estimated GPP and RE for

any single site as a function of method, and what does this

imply for giving uncertainty bounds on GPP and RE values

from any one method?
2. Is
 within site variability of derived GPP and RE as a function

of partitioning method smaller than typical interannual

variability in GPP and RE (�10% of 100 gC m�2 year�1,

Richardson et al., 2007)?
3. A
re some methods more sensitive to data gaps than others

in terms of mean variability? Do gaps induce any systematic

biases?
4. D
oes choice of partitioning method alter understanding of

differences in seasonal and diurnal variability of GPP and

RE, or cross-site rankings of annual sums of these

component fluxes? Are certain methods systematically

biased across the sites with respect to the ensemble mean

of GPP or RE?

Though independent evaluation of GPP and RE is not

performed here, a preliminary test of method fidelity can be

done by testing against synthetic data (Stauch and Jarvis,

2006). Prior to comparison of methods against observed data,

we investigated whether methods could accurately estimate

GPP and RE from NEE generated by a reasonably complex,

complete and well-tested ecosystem model, BETHY (Knorr and

Kattge, 2005). To further simulate observation conditions,



a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 8 2 1 – 8 3 8 823
artificial noise mimicking the random noise statistics of EC

observed NEE (Richardson et al., 2006b) was added to this

synthetic NEE. While this is not a perfect test, it did allow for

evaluation of partitioning methods performance relative to

known ‘‘truth’’, which, as noted above, is not possible with

current field measurement technology. Further, by adding

artificial gaps to the synthetic data, we evaluated method bias

induced by gaps.
2. Methods

2.1. Flux partitioning methods

GPP and RE estimates from a total of 23 different methods

participated (Table 1). These approaches are described fully by

Moffat et al. (2007) and the citations noted in Table 1, but a brief

overview is given here.

The largest batch of partitioning methods was of the non-

linear regression methods. These methods rely on correlating

nighttime NEE, representing RE, to temperature, time and

moisture variables, and daytime NEE, representing the

combination of GPP and RE, to temperature and radiation

variables. The primary differences among methods are choice

of functional form, meteorological forcing variables, fixed vs.

free parameters, parameter time dependence, time window
Table 1 – List of methods used to derive GPP and RE for all sites.
the noted citation. Abbreviations used by Moffat et al. (2007) a

Abbreviation Description

Non-linear regression

NA (NLR_AM) Noormets model

NE (NLR_EM) Eyring respiration model

NFA (NLR_FM_AD) Absolute deviation model

NFO (NLR_FM_OLS) Ordinary least squares mod

NFWa Weighted absolute deviatio

NLI Light intercept based regres

NLT (NLR_LM) Air temperature based regr

NLS Soil temperature based reg

NC1 (NLR_FCRN) Multi timescale regression

NC2b Multi timescale regression

MR1 Long term air temperature

MR1R Robust long term air tempe

MR2 Short term air temperature

MR2R Robust short-term air temp

Lookup tables/mean diurnal course

NLID Diurnal course with light in

NLIL Lookup table with light inte

NLTD (MDV) Diurnal course with air tem

NLTL (LUT) Lookup table with air temp

NLSD Diurnal course with soil tem

NLSL Lookup table with soil temp

Other methods

B365 (BETHY_ALL) Ecosystem model inversion

SPM (SPM) Semi-parametric method

UKFb (UKF_LM) Unscented Kalman filter

ANN (ANN_PS) Artificial neural network

ANNSa Artificial neural network w

a Method used only for synthetic analysis.
b Method not used in synthetic analysis.
size, statistical goodness-of-fit test, and whether regression is

done first on nighttime, daytime, or all NEE. These details are

found in Moffat et al. (2007).

Lookup table and diurnal course type methods formed the

second largest batch of partitioning methods. Lookup tables

rely on binning NEE data by one or more of the forcing

variables across a number of time periods (Falge et al., 2001).

Extrapolation with nighttime data against air temperature and

soil temperature or daytime data with a light intercept (use

daytime flux and extrapolate to zero incoming PAR) is used to

compute RE while GPP is solved as a residual. Diurnal course

methods perform multiple-day ensemble averaging across

suitable time windows.

A number of alternative statistical techniques were also

tested on the datasets. B365 is based on BETHY, a soil-

vegetation-atmosphere-transport (SVAT) type ecosystem

model (Knorr and Kattge, 2005). The model is forced with

the observed meteorology. The Markov Chain Monte Carlo

(MCMC) technique, a Bayesian parameter estimation algo-

rithm, is applied against the NEE data to optimize model

parameters (Knorr and Kattge, 2005).

The SPM technique estimates a three dimensional hyper-

surface from the observations to describe the net CO2

exchange as a continuous function of radiation, temperature

and time (Stauch and Jarvis, 2006). As such, it can be viewed as

both a non-linear regression without a prescribed functional
Detailed descriptions can be found in Moffat et al. (2007) or
re noted in italics

Citation

Noormets et al. (2007)

Desai et al. (2005)

Richardson et al. (2006a)

el Richardson et al. (2006a)

n model Richardson et al. (2006a)

sion Falge et al. (2001)

ession Falge et al. (2001)

ression Falge et al. (2001)

Barr et al. (2004)

Barr et al. (2004)

regression Reichstein et al. (2005)

rature Reichstein et al. (2005)

regression Reichstein et al. (2005)

erature Reichstein et al. (2005)

tercept Falge et al. (2001)

rcept Falge et al. (2001)

perature Falge et al. (2001)

erature Falge et al. (2001)

perature Falge et al. (2001)

erature Falge et al. (2001)

Knorr and Kattge (2005)

Stauch and Jarvis (2006)

Gove and Hollinger (2006)

Papale and Valentini (2003)

ith soil moisture Papale and Valentini (2003)
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form or a lookup table without binning the data. The

underlying semi-parametric (multidimensional) relationships

are described by cubic Hermite splines. The estimation of the

respiration component is based on the light independent

response of the hypersurface, i.e., the SPM partitioning

scheme makes use of all NEE data. The gross CO2 uptake is

then calculated as the difference between the estimates NEE

and RE (Stauch, 2007).

UKF is a dual unscented Kalman filter recursive predictor-

corrector method used to adjust the parameters of non-linear

equations (Gove and Hollinger, 2006). NEE and other observed

state variables, that are inherently noisy, are used to update

predictions of the state by a non-linear process model.

Continuous time series of optimal model state, model

parameters and uncertainty are provided. In the dual scheme,

two filters are run in parallel for state and parameter

estimation, respectively.

ANN is an artificial neural network based method (Papale

and Valentini, 2003). ANN is essentially a non-linear regres-

sion that mimics neural learning patterns and relies on the

data to discover the inherent functional relationships between

driver data and NEE (Moffat et al., 2007). Additionally, ANN_S

was used in the synthetic data analysis to test the role of soil

moisture as an additional predictor variable.

2.2. Synthetic model–model comparison

An initial comparison of the GPP and RE flux partitioning

methods was performed by evaluating their ability to retrieve

GPP and RE from synthetic data produced by an ecosystem

carbon cycle model. We used the BETHY model (Knorr and

Kattge, 2005) to simulate GPP and RE (with NEE then equal to

the residual) of a typical mid-latitude European forest forced

with observed meteorology, using model parameter values

appropriate for the site in question (DE3_2000, a mixed forest).

Methods did not know which particular site was being

simulated. To further mimic real-world conditions, noise

typical of real NEE measurements (Hollinger and Richardson,

2005; Richardson et al., 2006b) was added to the synthetic NEE

data, which, along with meteorological drivers (air tempera-

ture, soil temperature, PAR and soil moisture) was provided to

participants. The added noise was randomly drawn from a

double exponential distribution whose magnitude was pro-

portional to the measured flux as described in Hollinger and

Richardson (2005).

A subset of method investigators tested their models on the

synthetic NEE data. Two other methods, NFW and ANN_S were

tested with synthetic data but not with real data. These

methods were used to test an alternate error model for the NF*
Table 2 – Site names, major species, years of analysis and loc

Site Location Species

be1 Viesalm, Belgium Fagus sylvatica, Pseudotsuga menzie

de3 Hainich, Germany Fagus sylvatica

fi1 Hyytiala, Finland Pinus sylvestris

fr1 Hesse, France Fagus sylvatica

fr4 Puechabon, France Quercus ilex

it3 Roccarespampani, Italy Quercus cerris
series of methods and adding soil moisture to the neural

network, respectively. Output GPP and RE from the methods

were then compared to the original BETHY model GPP and RE

using a variety of statistical tests. This test did not reveal

which is the best method for deriving GPP and RE, but rather

provided a simple test of variability of derived GPP and RE

against a known modeled value with noise.

2.3. Observed data analysis

After the model–model analysis, model–data analysis was

performed using observed flux data. Flux tower NEE data

from six sites (10 site years) were taken from the Carboeur-

opeIP database (Table 2). These datasets were the same as

those used in the NEE gap-filling comparison project (Moffat

et al., 2007). The sites spanned a range of European forests

and climates, from Mediterranean to boreal. Meteorological

forcing data of air temperature, soil temperature and

incident photosynthetic active radiation (PAR) for each site

were gap filled using a variety of interpolation techniques as

described by Moffat et al. (2007). All NEE data were screened

and filtered with a standardized method (Papale et al., 2006),

leading to 70–90% data availability in daytime and 30–40% at

night.

Methods derived GPP and RE were compared against one

another for each site at the annual, monthly and diurnal

timescales. Deviation from mean plots in absolute and relative

values was computed to look for model-based variability in

GPP and RE. Median, interquartile range (IQR) and max–min

statistics were the primary assessment techniques to look for

ensemble, typical model, outlier model performance statistics.

Ranked statistics and ANOVA analysis on method by site were

performed to test for ranked coherence of sites as a function of

method and for systematic biases in methods as a function of

site.

2.4. Artificial gap scenarios

To further test method robustness under real observation

condition, artificial data gaps were added to the NEE data. A

total of 10 scenarios were used based on the mixed gap set

described in Moffat et al. (2007). Using a combination of gaps of

varying lengths (from individual half hours to a single 12-day

period), roughly 10% of the real NEE measurements were

removed from each time series. Both the real data and the

synthetic data were subject to these gap scenarios and the

methods produced new GPP and RE estimates for each site

year/gap scenario combination, which were then compared to

the original (no artificial gap) derived GPP and RE.
ations used in this analysis

Years Lat (8N) Lon (8E) Reference

sii 2000, 2001 50.30 5.98 Aubinet et al. (2001)

2000, 2001 51.07 10.45 Knohl et al. (2003)

2001, 2002 61.83 24.28 Suni et al. (2003)

2001, 2002 48.67 7.05 Granier et al. (2000)

2002 43.73 3.58 Rambal et al. (2004)

2002 42.40 11.92 Tedeschi et al. (2006)



Fig. 1 – Deviation (star) from modeled (a) annual RE, (b) annual GPP, (c) May-Sep RE, and (d) May-Sep GPP for each method that

produced GPP and RE from the noisy synthetic NEE dataset produced by the BETHY model. Most methods were biased low

against the model RE and GPP. Effect of gaps, shown by interquartile range (box) and total range (line), was to skew GPP and

RE slightly positive for most methods, a small effect that has no simple explanation. Method B365 had zero variation as it

did not perform a gap sensitivity test.
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3. Results

3.1. Synthetic flux analyses

The methods generally were able to retrieve BETHY model

driven GPP and RE given artificially noisy NEE and gap-

filled meteorological forcing to within 100 g C m�2 year�1

(Fig. 1a and b). In terms of annual RE and GPP, mean deviation

was �47 g C m�2 year�1 (range �126 to +43) for RE and

�35 g C m�2 year�1 (range �100 to +51) for GPP, and all but

two methods were biased low against the ‘‘true’’ GPP and RE.

The Markov Chain Monte Carloversion of BETHY (B365)) had the

largest annual RE bias, while the ANN method had the largest

GPP bias. In both cases, the smallest bias was found with NLI.

Mean absolute errors were 54 g C m�2 year�1 (range +5 to +126)

for RE and 44 g C m�2 year�1 (range +5 to +100) for GPP. In

relative terms, methods were within 4.8% for RE and 2.7% for

GPP. Most of the biases occurred during the summer season

(Fig. 1c and d), as might be expected given it is the season when

fluxes were largest in absolute magnitude. Wintertime fluxes

were generally well modeled by all methods with low bias.

The 10 artificial gap scenarios added additional source of

variability to the RE and GPP retrieval, with an IQR average of
19 g C m�2 year�1 (range +9 to +36) for RE and 21 g C m�2 year�1

(range +5 to +41) for GPP. For individual methods, max–min

variability across the 10 different scenarios averaged

49 g C m�2 year�1 (range +33 to+66) for REand 40 g C m�2 year�1

�1 (range +19 to +85) for GPP. The NFA model had the largest

variability with respect to gaps for both GPP and RE. NE and SPM

methods had the smallest gap variability for RE IQR and max–

min, respectively, while SPM and NC1 were the smallest for GPP

IQR and max–min. While most methods were negatively biased

with respect to synthetic GPP and RE, adding gaps to NEE tended

to increase method GPP and RE, leading to a smaller bias against

synthetic RE and GPP for most models, though this is likely a

coincidence. This effect is in contrast to the real data scenarios,

where gaps just increased variability in a non-systematic

fashion.

We looked at the correlation of GPP and RE predicted by

BETHY with predictions of each of the partitioning methods at

both the hourly and daily timescale. Correlation of method RE

to BETHY RE at hourly scales was significantly improved when

aggregated to the daily scale (Fig. 2). The analysis of the

observed data showed that this is very likely due to choice of

RE diurnal cycle representation in the methods. Poor hourly

correlation was found with NFA, NFW, NFO and NC1 methods.



Fig. 2 – Comparison of correlation coefficient (R2) to mean annual half-hourly bias for (a) RE at hourly scales, (b) GPP at hourly

scales, (c) RE at daily scales and (d) GPP and daily scales for each method against the synthetic GPP and RE dataset. Weak

correlation for RE at hourly scales disappeared at the daily scale. GPP correlation was strong at all timescales. Parameter

inversion of the synthetic model (B365) produced high correlation but a large negative bias.
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All methods perform better at the daily scale, some more than

others. NLS has the lowest correlation to synthetic RE at the

daily scale. For GPP, strong correlation was found for all

methods on both the hourly and daily scale.

The MCMC parameter inversion of the BETHY model had

the highest correlation to the synthetic data GPP and RE, which

could be expected given the 1:1 correspondence in model

equations, but not the lowest bias (Fig. 8). NLI had the lowest

bias for RE and GPP, but was in the middle for the pack on

correlation. The MR1, MR1R, MR2 and MR2R suite of methods

had generally strong performance in both bias and correlation.

3.2. Partitioning method variability

When the methods were applied to real observed NEE,

variability by partitioning method in GPP and RE was found

to be relatively small with respect to annual totals (Fig. 3). IQR

of GPP and RE from all the methods was typically less than 10%

of the annual sum of GPP or RE for any particular site. For RE

(Fig. 3a), the IQR averaged 108 g C m�2 year�1. This translates

to a mean variability of 9.8% (5.9–12.3%) of the annual RE.

However, outliers across some methods pushed the total

mean range (max–min) to 366 g C m�2 year�1. For GPP (Fig. 3b),
very similar ranges are seen in IQR but fewer outliers led to a

smaller max–min range. Mean IQR was 104 g C m�2 year�1 and

7.0% in relative terms, while max–min range averaged

314 gC m�2 year�1 of annual GPP.

Large outliers for some methods existed for several sites,

especially the Mediterranean forests (IT3 and FR4). Sites with

the largest spread in IQR or max–min range for both RE and

GPP were the Mediterranean sites, FR1_2001 and IT3_2002,

with max–min range exceeding 450 g C m�2 year�1. Deciduous

forest FI1_2001 and broadleaf evergreen FR4_2002 had the

smallest range across methods, less than 210 g C m�2 year�1

for max–min in RE and 180 g C m�2 year�1 max–min for GPP.

These numbers could be considered an estimate of the upper

bound of uncertainty expected due to model selection.

GPP/RE ratios (Fig. 3c) typically showed smaller variation

across methods, with a mean IQR relative variation of 2.5%

(range 1.0–4.2%). Max–min ranges were also smaller, with

mean max–min of 5.8% (3.7–10.2%). These results are similar to

the variability found in gap filling of NEE (Moffat et al., 2007).

Though large IQR was found for IT3_2002, the site had the

smallest range of GPP/RE, reflecting the role of compensating

errors in GPP and RE for models that are inverted against a

given NEE.



Fig. 3 – Median (star), interquartile range (box) and total

range (line) of annual (a) RE, (b) GPP and (c) GPP/RE ratio for

each site as a function of GPP/RE method. Uncertainty was

greater in RE and also for Mediterranean site GPP and RE.

Most methods were within �100 gC mS2 yearS1 of each

other for GPP and RE, around 10% of annual GPP and RE,

though large outliers existed at many sites.
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3.3. Biases and cross-site rankings

Though good agreement was found across model GPP and RE,

several methods were found to be biased high or low with

respect to the ensemble mean. Though the ensemble mean is

not necessarily the ‘‘correct’’ or ‘‘true’’ GPP or RE, the model

deviations provide a way to classify methods into groups and

identify any systematic outliers. We conducted an analysis of

variance (ANOVA), with ‘partitioning method’ as a main

effect and ‘site’ as a blocking factor, and then used a

Bonferroni multiple comparison test to identify groups of

partitioning methods that produced similar results (Tables 3

and 4; black bars indicate groups of methods that were not

significantly different from one another in the multiple

comparison test). This analysis indicated six different (but
largely overlapping) groups of methods for GPP, and seven

groups for RE. In both cases, the UKF (which produced the

highest estimates of both GPP and RE) was in its own group,

and thus significantly different from all other methods. The

NE method produced the lowest estimates of both GPP and RE,

but was always grouped with a number of other methods,

including NFA, NLSLS, and ANN, indicating that these

methods did not produce results that were significantly

different from each other according to the ANOVA analysis.

For RE, groups c and f (for GPP, groups c and e) included 20 of

the 23 methods used (all except NE, NA, and UKF).) Biases

evident in RE (Table 3) were generally identical to biases in

GPP (Table 4), which could be expected given the covariance

between GPP and RE the methods produce for a given NEE (i.e.,

for a given NEE, and RE estimated by a particular method, then

by definition GPP = NEE + RE). In general, differences at the

annual scale were also reflected at the seasonal scale (data

not shown).

In spite of the effects of method biases and variability,

cross-site rankings of sites due to partitioning method were

surprisingly robust (Tables 5 and 6). Methods were unanimous

in selecting sites FI1_2001 and FI1_2002 as the sites with the

smallest GPP and RE, and site FR1_2002 with the largest GPP

and RE. However, the ANOVA showed that the ‘‘site’’ and

‘‘method’’ effects are largely additive (i.e., the model residual,

which by default includes any ‘‘method’’ � ‘‘site’’ interaction

effect, was small, less than 2% of the total variance), implying

that while each method is internally consistent in its ranking

of sites of highest and lowest GPP or RE, comparisons of one

site with one method to another site with another method is

likely to be inaccurate unless the ANOVA results show that the

two methods produce statistically similar comparisons (i.e.,

same letter grouping in Tables 3 and 4). Thus, an important

result is that partitioning method must be taken into account

when comparing GPP and RE across sites. On the other hand, if

all sites had GPP and RE derived from the same method (at

least among the ones tested here), the rankings of which sites

had highest and lowest GPP or RE should be generally

insensitive to which method one chooses.

3.4. Gap sensitivity

Sensitivity of methods to data gaps was significantly smaller

than sensitivity of method choice for GPP and RE. For each

method at each site, GPP and RE were computed with 10

artificial gap scenarios and compared to the GPP and RE

computed by the method for data with no artificial gaps. The

relative variation on annual GPP and RE due to the 10 gap

scenarios ranged from 5 to15% for RE and 4 to 10% for GPP

across the various partitioning methods (Fig. 4).

Several methods, in particular UKF, SPM and NLID, were

especially sensitive to gaps in that GPP and RE estimates varied

widely among the different artificial gap scenarios (Fig. 4). For

these methods, gaps tended to reduce GPP and RE by less than

10% compared to the no artificial gap scenario. NLS and NE had

the smallest gap sensitivities for RE, while NLS and NC2 were

smallest for GPP. The median deviation across all gap

scenarios for most methods was at or near zero, implying

that the addition of 10% artificial gaps did not generally add a

systematic bias to GPP and RE.



Table 3 – Ranking of method RE for each site and ANOVA correspondence statistics for significant differences across
methods for all sites

Methods that share a black box were not significantly different from each other in this test. Lower rankings equal lower calculated RE. A

handful of sites had a consistent low (NE, NFA) or high (NA, UKF) bias, but most did not.

Table 4 – Ranking of method GPP for each site and ANOVA correspondence statistics for significant differences across
methods for all sites

Methods that share a black box were not significantly different from each other in this test. Lower rankings equal lower calculated GPP. A

handful of sites had a consistent low (NE, NFA) or high (NA, UKF) bias, but most did not.
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Table 5 – Ranking of site RE by each method and ANOVA statistics showing significant differences across sites as
classified by all methods

Sites that do not share a black box had significantly different RE according to the partitioning methods. This analysis indicates that robust

comparison across sites is possible given the strong correspondence in site rankings. Largest disagreements were found for sites de3_2000 and

fr4_2002.
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3.5. Seasonal and diurnal trends

Seasonal and diurnal analyses of GPP and RE are typically used

for analysis of environmental controls on photosynthesis and

respiration. Ideally, this kind of analysis would not be affected

by the choice of NEE partitioning method. However, given the

differences among the partitioning methods at the annual

timescale, we expected the methods to differ in their seasonal

and diurnal patterns of NEE partitioning.

For seasonal analysis, the differences among methods

were found to be generally small among 10 site years analyzed;

i.e., all methods yielded relatively consistent estimates of the

seasonal pattern (Figs. 5 and 6). Here, to increase visual clarity,

only one year for each of the six unique sites is shown. For RE

(Fig. 5), methods generally had strong agreement on the course

of monthly RE, though this was more true for the non-

Mediterranean sites. Methods were consistent in showing

decreased RE in July for BE1_2000 and peak respiration in May

for DE3_2002 (though with greater variability given the large

outlier for August). Though the large decrease in RE in July-

August for FR4_2002 was replicated by most partitioning

methods, there was large uncertainty in its magnitude across

all the methods. Results for monthly GPP have similar results
with fewer outliers (Fig. 6). Methods portrayed what appear to

be typical evergreen and deciduous trends in GPP (Falge et al.,

2002; Law et al., 2002). Greater variation among methods was

seen again in the Mediterranean sites, FR4_2002 and IT3_2002,

perhaps indicating less of a consensus on the environmental

controls over seasonal patterns of variation in these ecosys-

tems compared to temperate or boreal systems. Additionally,

large gaps are found in IT3_2002. Finally, much of the

variability in outliers is due to one or two methods, most

notably UKF. Methods NA, NLID, and B365 also tended to be

positively biased from the ensemble mean.

Summer diurnal patterns for RE had far less coherence

across methods (Fig. 7). This lack of agreement stemmed from

both (1) choice of air temperature vs. soil temperature as

primary control of respiration (the latter dampening high

frequency variability) and (2) high frequency filters for RE

present in some of the methods. Methods B365, NA, NLTD,

NLTL, NLTR, UKF, MR1 and MR1R had more pronounced

diurnal courses for RE than the other methods. Largest diurnal

courses were found in UKF, NA, and NLTD. Methods with no

diurnal course are the light intercept based methods, NLID,

NLIL, and NLI. This was also evident in the synthetic flux

analyses (see below). In contrast, methods were very coherent



Table 6 – Ranking of site GPP by each method and ANOVA statistics showing significant differences across sites as
classified by all methods

Sites that do not share a black box had significantly different GPP from other sites according to the partitioning methods. This analysis

indicates that robust comparison across sites is possible given the strong correspondence in site rankings.
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with minimal variability on the diurnal pattern of GPP (Fig. 8),

which could be expected given the strong direct correlation of

photosynthetic active radiation to GPP. Methods were con-

sistent in showing afternoon GPP dip in IT3_2002 and an

asymmetric GPP pattern in FR4_2002.
4. Discussion

4.1. Biases and correlations in model–model comparison

Retrieval of model generated GPP and RE from noisy modeled

NEE data was shown to be feasible for all methods at least on

greater than daily timescales. For this analysis, the BETHY

model is assumed to be true and thus our results do not

necessarily show which methods are more reliable than

others, only which methods are better able to decompose a

given NEE signal into its components for a given functional

form. This is why the B365 method had the highest correlation

to the synthetic GPP and RE, due to the similarity in model

equations. However, B365 also exhibited a large bias in its

retrieval (which can happen because it is a blind parameter
retrieval against the noisy model data), showing the need for

careful consideration of how using Gaussian cost functions for

parameter retrieval may perform poorly in face of non-

Gaussian noise.

Most methods were low biased against the synthetic GPP

and RE, including the original model itself, on both seasonal

and annual scales. The partitioning methods were not biased

when comparing method NEE to BETHY NEE, however. Some

of this may have been due to the non-Gaussian noise found in

eddy covariance flux data and added to the synthetic NEE

(Hollinger and Richardson, 2005; Richardson et al., 2006b). The

low bias even persisted in statistically sophisticated methods,

such as ANN and ANN_S. Alternatively, the BETHY model

functions may have forms that do not easily collapse to simple

empirical functions used by most methods. Even though the

B365 method is based on the BETHY model itself, the MCMC

inversions find other parameters with a higher correlation to

noisy data at the half-hourly timescale. These parameters,

however, lead to the wrong annual GPP and RE. Trudinger et al.

(2007) have demonstrated that this failure to retrieve the

original BETHY fluxes may well be caused by inconsistencies

between the added errors and the cost function used within



Fig. 4 – Median (star), interquartile range (box) and total range (line) relative sensitivity of methods to 10 mixed gap scenarios

averaged across all 10 site years for annual (a) RE and (b) GPP. Most methods did not incur a bias due to gaps, but 10%

additional artificial data gaps added on average an increased uncertainty of 8% for RE and 6% for GPP. B365 was excluded

since it did not run gap scenarios.

Fig. 5 – Monthly median (star), interquartile range (box) and total range (line) RE as a function of method for a sample year

from each of the six unique sites in this study. Generally good agreement was found across most methods on seasonal

patterns, though large outliers existed, especially for the Mediterranean sites (lower row).
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Fig. 6 – Monthly median (star), interquartile range (box) and total range (line) GPP as a function of method for a sample year

from each of the six unique sites in this study. The agreement among methods for monthly GPP was stronger than for RE

and outliers were smaller.
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the optimization. While non-Gaussian errors were added to

produce noisy NEE data, B365 applied a Gaussian error model

for parameter estimation. The mismatch is in the same range

as the overall error of other methods. This highlights the

importance of an adequate cost function within the inversion

against eddy covariance data. Further research in this

direction is needed.

The synthetic analysis did reveal that many methods had

low correlation to synthetic RE at hourly timescales. This

effect is likely similar to the large variability seen in the diurnal

RE in the site diurnal trend analysis. However, the synthetic

analysis cannot say that those methods with low correlation

are poor at reproducing diurnal RE (though some produce no

diurnal signal at all), only poor at recovering the modeled

diurnal RE. A significant factor in patterns of diurnal RE is how

the partitioning methods incorporate information about air

and soil temperature, the latter typically having a damped,

lagged signal of air temperature that varies with depth. Given

the strong correlations with both temperature variables to RE,

diurnal RE patterns from the partitioning methods will
generally mimic patterns found in these temperature vari-

ables or some combination thereof. All this synthetic analysis

can say is whether a method has a diurnal RE pattern similar to

BETHY. At daily scales, the previously low correlated methods

had large improvement in performance. Multi timescale

correlation analysis reveals that most methods except for

NLS reach >0.6 correlation to synthetic RE at 8 h averaging

time (Fig. 9). The NLS method does not reach that status point

until the weekly timescale.

For GPP, high correlation was found at the hourly scale,

which increased with averaging time. A small dip was found

for all methods except B365 at 12 h. This dip is not easily

explained, but should be noted that it is very small and

possibly an artifact of BETHY itself, given the model–model

nature of the comparison. In both cases, clusters of methods

with similar performance metrics do appear, primarily as a

function of how closely the methods’ functional forms

approximate BETHY model’s functional forms. Interestingly,

methods that make few assumptions on seasonal and diurnal

patterns, such as ANN, ANN_S and SPM were not leaders in



Fig. 7 – Summer (day of year 152–243) ensemble hourly RE for all methods at the six unique sites. Large variation in diurnal

course was found across methods partly as a function of relying mainly of air temperature or soil temperature for

controlling decomposition.
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either short timescale correlation or annual bias; rather, many

of the non-linear regression methods outperformed them in

both metrics. This result suggests the need for more

investigation of the newer partitioning methods. Additionally,

it should be noted that BETHY is one of many ecosystem

models and thus the analysis here should not be construed as

a ranking of partitioning methods. BETHY is not necessarily

the most complex and complete ecosystem model, but one

that represents a broad swatch of these models. Many

assumptions need to be made in ecosystem models on the

environmental controls of carbon metabolism that do not

have strong empirical grounding. The synthetic analysis was

performed primarily as an initial way to test variability in GPP

and RE retrieved by the NEE partitioning methods for a given

known GPP and RE. A more thorough test would be to use an

ensemble of models against an ensemble of synthetic noisy

scenarios and is recommended here.

The analysis was unable to assess which method was the

best for deriving GPP and RE from NEE. Even the synthetic

analysis here with one model did not reveal an obvious

candidate with both zero bias and high correlation. The

analysis did reveal outliers and those with higher variability or
bias in the face of gaps, but otherwise we cannot strictly

recommend one method over the other. Stoy et al. (2006)

compared four methods at three sites with independent data.

Though all models performed poorly at estimating short-term

RE, they reasoned that their most complex models (non-

rectangular hyperbola) that relied on daytime flux data to

estimate RE with short time windows, worked best at

capturing long timescale variability. Here, we instead find

the nighttime extrapolation using short-term temperature

sensitivity seemed have highest coincidence with the syn-

thetic data.

4.2. Total variability in partitioned observed NEE

Results of the present study demonstrate that multi-site

comparisons of component fluxes of NEE, i.e., partitioned GPP

and RE, are not valid unless the method used for the

partitioning is taken into account. While some methods led

to a more or less similar partitioning of NEE, the range across

all methods was relatively large (�100 g C m�2 year�1 IQR), and

this variability may confound true differences among sites.

Though this result does not provide an independent con-



Fig. 8 – Summer (day of year 152–243) ensemble hourly GPP for all methods at the six unique sites. Unlike RE, strong

correspondence in diurnal course of GPP was found, due to its strong link to incoming shortwave radiation. Patterns in

timing of peak GPP and afternoon GPP decline were evident at some sites, suggesting that studies of environmental

controls on photosynthesis are possible with these methods.
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firmation on the fidelity of using eddy flux tower observations

for GPP and RE, it does lead to confidence and provide a rough

uncertainty bound on previously reported GPP and RE

estimates independent of choice of partitioning method.

Previous studies focused on a few methods at a many sites

(e.g., Falge et al., 2001; Law et al., 2002; Reichstein et al., 2005;

Stoy et al., 2006) and so were limited in their ability to draw the

conclusions regarding method-related variability in estimated

GPP and RE. A few site-specific studies have attempted to use

Monte Carlo techniques to evaluate the effects of gaps on both

integrated NEE as well as GPP and RE estimates (e.g., Desai

et al., 2005; Griffis et al., 2003; Richardson and Hollinger, 2005),

but this study is the first to systematically investigate the

effects of synthetic gaps on the consistency of the estimated

GPP and RE for a range of different partitioning methods.

In this study, across 10 site years of data and 23 methods,

75% of methods fell within 10%, or roughly 100 g C m�2 year�1,

of each other (for a given site year) in terms of annual GPP and

RE. Although some outliers were evident at many sites, these

were not consistently associated with a particular method,
except that for virtually all site years, UKF consistently

produced the highest estimates of GPP and RE. The other

methods could be separated into groups of models with

similar predictions, but no systematic methodological reason

can be identified for why some methods fall into one group or

the other. Greater variability found for the Mediterranean sites

suggests a lack of consensus for partitioning NEE to GPP and RE

in seasonally water-limited ecosystems. Hollinger and

Richardson (2005) demonstrate that good partitioning meth-

ods are approaching the uncertainty limits of the flux data, so

larger variability does not necessarily signify poor model

selection, but rather that all methods are not necessarily

suitable for use at all kinds of sites depending on core

assumptions about seasonal cycles or expected patterns of

GPP and RE. In this sense, methods like ANN and SPM, which

do not impose a priori assumptions about functional relation-

ships between GPP or RE and environmental drivers, may have

superior performance across a wider range of ecosystem types

than empirical regression based routines. Ultimately, though,

all partitioning methods will be driven primarily by the



Fig. 9 – Expansion of correlation analysis in Fig. 2 showing correlation as a function of average time for each method

compared to the synthetic BETHY model (a) RE and (b) GPP. For RE, all methods except NLS reached R2 > 0.6 by 12 h despite

starting for a wide range of correlation at the half-hourly scale. For GPP, a small dip in correlation was found for all methods

except B365 at 12 h, an effect which has not been explained.
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variability seen in the driver data provided and if the driver

data does not reflect the cause of variation in GPP and RE (e.g.,

invasive pest outbreak, disturbance, nutrient limitation), then

the no method will capture the variation in GPP and RE.

An encouraging aspect of the NEE partitioning methods

was their general robustness against artificial data gaps in

NEE. Data gaps in flux tower time series are common for a

number of reasons and filtering of improper observation

conditions will always lead to gaps with eddy covariance. For

most methods and sites, 10% additional gaps increased

variability of GPP and RE at 75% of sites by 1–2%, but across

all sites and methods, variability averaged 6–7%. While these

numbers were smaller than the variability caused by choice of

partitioning method, it is not an insignificant source of

uncertainty. Also, timing and length of gaps matter (e.g.,

missing a strong respiration peak in early spring), which

deserves closer examination (Richardson and Hollinger, 2007).

Additional variability GPP and RE estimated from flux tower

measurements of NEE arrives from systematic corrections to

the NEE data such as the u* correction and data filtering, that

were not considered in this article (all datasets were already

screened for ‘‘bad’’ data). Papale et al. (2006) estimate these

corrections have an uncertainty less than 100 gC m�2 year�1 to

NEE, leading to potential for �10% additional uncertainty on

GPP and RE estimates. Hagen et al. (2006) used a bootstrapping

approach at a single site to estimate uncertainty in GPP due to

random errors in eddy covariance data, gaps and GPP model

choice. This error turned out to be large at hourly timescales

but approached 10% at annual timescales, the largest effect

being choice of partitioning method. If all sources of GPP and

RE uncertainty assessed here (data filtering (10%), partitioning

method choice (10%) and gaps (5%)) were independent and

uncorrelated, total uncertainty would on average reach �25%,

limiting the usefulness of comparing GPP and RE, unless they

are computed using the same method.

4.3. Confidence in seasonal and cross-site patterns

Partitioning methods generally agreed on the cross-site

rankings of GPP and RE. These differences were significant
according to ANOVA. Intersite ranking of GPP and RE was

insensitive to choice of method as long as the same method (or

one that is statistically similar) was used for all sites, or the

effect of method was considered (e.g., biases are taken into

account). The upshot of these results is increased confidence

in previously reported comparisons of flux tower derived GPP

and RE across sites (e.g., Law et al., 2002; Reichstein et al.,

2005), as they should not be strongly affected by choice of

method in decomposing the GPP and RE, at least according to

this analysis. However, given the variability and biases

discussed, comparisons of GPP and RE across sites using

different methods are unlikely to have the same coherence,

which calls for standardized processing.

Methods were also generally coherent on seasonal trends

in GPP and RE at most sites. The ensemble of methods showed

close agreement on periods of high and low GPP or RE.

However, outliers at a few sites at some months were evident

and larger spread was found in the Mediterranean sites, since

these sites have seasonal patterns that may not be repre-

sented by all methods. Moreover, in the case of IT3_2002, large

(multiple week) gaps due to instrumentation issues led to

higher uncertainty. Many outliers in other sites were due to

one method, typically UKF. Overall, given strong coherence

across methods lends support to prior results on studies of GPP

and RE seasonality (Falge et al., 2002) and environmental

controls on GPP and RE (Law et al., 2002).

Diurnal trends in GPP were coherent across all methods for

all sites, which could be expected given the strong and direct

correlation between incoming solar radiation and GPP.

However, trends for diurnal RE were highly variable across

sites, partly driven by method choice of soil temperature or air

temperature as the primary control on respiration. Also,

mechanisms of diurnal variation for RE are less well known

and the timescales on which temperature exhibits control on

RE are not well constrained. The filtering of large amounts of

nighttime NEE data, existence of inherent noise in flux tower

time series, and a lack of strong diurnal temperature trend at

night places additional limits on the ability of methods to

extrapolate diurnal RE from flux tower NEE. In a study using 19

respiration models and data from three flux tower sites,
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Richardson et al. (2006a) found that neural networks, with

their ability to integrate information from multiple forcing and

covariance among forcing, performed better than simple

parameterized regression models (e.g., Q10, Lloyd-Taylor).

However, the focus of that comparison was mainly on annual

sums, not diurnal trends. Emerging datasets from automated

soil chambers should help quantify actual diurnal trends in

soil respiration, which accounts for 40–60% of RE in forested

ecosystems (Davidson et al., 2006). It should also be noted that

most partitioning methods were designed to characterize the

mean but not the variance (or higher order moments) at short

timescales, with the intention of producing credible annual

means and seasonal cycles rather than preserving all statistics

of the time series. Therefore, method performance at the

annual timescale should not be taken as a sufficient proxy for

performance at short timescales (e.g., diurnal to synpotic) (e.g.,

Figs. 2 and 9).
5. Summary and conclusions

GPP and RE values estimated by 23 gap-filling methods from 10

site years of NEE flux tower data showed good agreement

among methods at the annual and seasonal scales, with

variability among methods �10% of the annual component

flux, roughly comparable to typical interannual variability.

Artificial gap scenarios (10% data removal) resulted in an

additional 6–7% variability for individual methods, but did not

tend to bias the method GPP and RE. Most methods were

coherent in their ranking of sites from smallest to largest GPP

or RE, leading to greater confidence in the ability of these

methods to identify cross-site differences and spatial patterns

of GPP and RE, as long as the same method is used to partition NEE

across all sites. In an analysis of synthetic data, we found daily

and annual GPP and RE estimates extracted from NEE

produced by the BETHY model were generally well correlated

with the original synthetic fluxes.

However, there were some notable discrepancies among

the partitioning methods. Large outliers existed for some

sites and uncertainty was larger for Mediterranean sites.

Several of the methods were shown to be systematically

biased against the ensemble mean GPP and RE. At the diurnal

scale, methods were in close agreement for growing season

diurnal GPP course, but varied widely for RE due to choice of

functional forms and difficulties in extrapolating high gap

frequency nighttime NEE to half-hourly RE. However, no

particular class of methods could be identified for having

consistent biases. ANOVA analysis did show several indivi-

dual methods that tended to be biased against the ensemble

mean.

As previously stated, this analysis does not identify which

methods are more correct in their interpretation of hourly,

seasonal or annual GPP and RE. Rather, the results showed the

robustness of most methods against the consensus GPP and RE

for particular sites, gaps in the NEE data, and coherence of

cross-site comparisons. Additionally, the synthetic NEE tests

revealed the fidelity of method GPP and RE retrieval, at least for

correlation of synthetic to partitioned flux and similarity of the

method empirical functions to a complex, well-tested eco-

system model.
Given the relatively fast run times for most methods, the

concept of an ensemble modeling system for GPP and RE

encompassing different types of methods (data vs. process

based; day vs. nighttime based), that were known not to be

systematically biased or have large uncertainty/biases with

gaps should be explored. Future intercomparison work should

focus on comparing methods to independent GPP and RE

estimates for the sites, especially long-term automated

continuous respiration measurements, which will help with

at least the soil respiration component, the source of most

ecosystem respiration in many ecosystems. This study

showed that additional investigation of the differences of

partitioning method results in seasonally water-limited

ecosystems, such as the Mediterranean sites, may be needed

to better capture GPP and RE. This study only focused on

annual data and did not delve specifically into interannual

variability. Additional analysis with sets of sites with multiple

years of data is warranted, especially in light of the need to

move from diagnosis to prediction, which is only possible if we

understand the environmental controls on GPP and RE at

interannual and longer timescales. Finally, continued devel-

opment of tests of method fidelity against eddy covariance

noise, data filtering, gaps and systematic biases will help

further constrain the total expected uncertainty for GPP and

RE estimates.
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Ü., Dal Maso, M., Kulmala, M., Vesala, T., 2003. Long-term
measurements of surface fluxes above a Scots pine forest in
Hyytiala, southern Finland, 1996-2001. Boreal Environ. Res.
8, 287–301.

Tedeschi, V., Rey, A.N.A., Manca, G., Valentini, R., Jarvis, P.G.,
Borghetti, M., 2006. Soil respiration in a Mediterranean oak
forest at different developmental stages after coppicing.
Global Change Biol. 12, 110–121.

Trudinger, C.M., Raupach, M.R., Rayner, P.J., Kattge, J., Liu, Q.,
Pak, B., Reichstein, M., Renzullo, L., Richardson, A.D.,
Roxburgh, S.H., Styles, J., Wang, Y.-P., Briggs, P., Barrett, D.,
Nikolova, S., 2007. OptIC project: an intercomparison of
optimization techniques for parameter estimation in
terrestrial biogeochemical models. J. Geophys. Res. 112
(G02027), doi:10.1029/2006JG000367.

http://dx.doi.org/10.1029/2006JG000367

	Cross-site evaluation of eddy covariance GPP and RE decomposition techniques
	Introduction
	Methods
	Flux partitioning methods
	Synthetic model-model comparison
	Observed data analysis
	Artificial gap scenarios

	Results
	Synthetic flux analyses
	Partitioning method variability
	Biases and cross-site rankings
	Gap sensitivity
	Seasonal and diurnal trends

	Discussion
	Biases and correlations in model-model comparison
	Total variability in partitioned observed NEE
	Confidence in seasonal and cross-site patterns

	Summary and conclusions
	Acknowledgements
	References


