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Abstract

Changes in species composition and diversity are the inevitable consequences of climate change, as well as land use and land cover change.
Predicting species richness at regional spatial scales using remotely sensed biophysical variables has emerged as a viable mechanism for monitoring
species distribution. In this study, we evaluate the utility ofMODIS-based productivity (GPP and EVI) and surface water content (NDSVI and LSWI)
in predicting species richness in the semi-arid region of InnerMongolia, China.We found that thesemetrics correlatedwell with plant species richness
and could be used in biome- and life form-specific models. The relationships were evaluated on the basis of county-level data recorded from the Flora
of Inner Mongolia, stratified by administrative (i.e., counties), biome boundaries (desert, grassland, and forest), and grouped by life forms (trees,
grasses, bulbs, annuals and shrubs). The predictor variables included: the annual, mean, maximum, seasonal midpoint (EVImid), standard deviation of
MODIS-derived GPP, EVI, LSWI and NDSVI. The regional pattern of species richness correlated with GPPSD (R2=0.27), which was also the best
predictor for bulbs, perennial herbs and shrubs (R2=0.36, 0.29 and 0.40, respectively). The predictive power of models improved when counties with
N50% of cropland were excluded from the analysis, where the seasonal dynamics of productivity and species richness deviate patterns in natural
systems. When stratified by biome, GPPSD remained the best predictor of species richness in grasslands (R2=0.30), whereas the most variability was
explained by NDSVImax in forests (R

2=0.26), and LSWIavg in deserts (R
2=0.61). The results demonstrated that biophysical estimates of productivity

and water content can be used to predict plant species richness at the regional and biome levels.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Predicting biological diversity at broad spatial scales based
on remotely sensed land surface properties has become viable in
the modern scientific community because of the increasing
variety and availability of remote sensing products. Several
studies have shown the increasing accuracy and confidence in
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this method. Waring et al. (2006) explored the empirical
relationships between MODIS enhanced vegetation index (EVI)
and tree species distribution in the contiguous United States and
found that various expressions of EVI can explain up to 60% of
the tree species diversity. Seto et al. (2004) explored the
linkages between Landsat-derived normalized difference vege-
tation index (NDVI) and the spatial variance of bird and
butterflies in the Great Basin of western North America.
Whether the choice of remote sensing products is based on
species richness–vegetation heterogeneity relationships at the
landscape level (Seto et al., 2004), climatic conditions (Waring
et al., 2006), or potential biophysical regulations of species
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distribution (Gavin & Hu, 2006), species prediction models will
greatly enhance our knowledge and support effective manage-
ment of species at broader spatial scales, as an increasing
amount of earth observation satellite data and associated
products are made available in the public domain.

Plant species richness studies have been conducted in semi-
arid regions at the local scale (e.g., Mediterranean region, Osem
et al., 2002), at the landscape level (Jørgenson & Nøhr, 1996),
and the regional scale (e.g., Kenya, Oindo & Skidmore, 2002).
Some studies considered a direct remote sensing approach to
determine species richness, where species assemblages are
regressed with spectral reflectance values (Carter et al., 2005;
Muldavin et al., 2001). However, such methods that work well
at the landscape level might not be a good choice at the regional
level due to prohibitive cost of hyper spectral and high-
resolution imagery. The indirect method of remote sensing
offers an alternative approach and involves the use of primary
productivity, climate variables and habitat structure to deter-
mine spatial variations of species richness (Turner et al., 2003).

Species richness research at regional scales is traditionally
based on NDVI as an indicator of productivity but its use in the
semi-arid environment has been questionable owing to its
sensitivity to soil background signature in areas with sparse
Fig. 1. Locationmap of study region, province of InnerMongolia, P.R. China and land u
(MOD12Q1) IGBP classification, overlaid with biomes derived from WWF terrestrial
ground cover (Huete et al., 1997, 2002). In addition to replacing
NDVI with EVI, the inclusion of vegetation water content
indices (Ceccato et al., 2002a,b; Qi et al., 2002; Xiao et al.,
2005) has been suggested as more appropriate predictor vari-
ables for semi-arid environments such as Inner Mongolia (Qi
et al., 2002).

Inner Mongolia is divided into three biomes: the arid deserts in
the west, grasslands in the center, and forests in the northeast
region (Fig. 1). The grasslands in China (mostly in Inner
Mongolia) make up 41% of the land area, and are especially
prone to the loss of biodiversity owing to the warming tends
(~1.5 °C) in northeast Asia over the last 50 years (Lee et al., 2002;
Yu et al., 2003). The area has been subjected to intensive land use
practices (Chase et al., 2000; Kang et al., 2007). Climatic changes
have not only influenced ecosystem dynamics, productivity, and
stability of the Eurasian steppes, but have also accelerated the
impacts of land use that are associated with the rapid socio-
economic growth (Jiang et al., 2006; Kang et al., 2007). The
degradation of the semi-arid grassland has resulted in the
replacement of dominant plant life forms (e.g., herbaceous
grass) by invasive shrubs, which are less efficient in water use
(Zheng & Huang, 1992; Yang et al., 1994; Cheng et al., 2001a,b,
2007; Zhang, 1994). These degraded arid and semi-arid
se/land cover (LULC)map of InnerMongolia obtained fromMODIS-derived 1 km
eco-region boundaries (http://www.worldwildlife.org/science/data/terreco.cfm).
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ecosystems are prone to wind erosion and considered to be the
cause of frequent sandstorms with subsequent loss of biodiversity
(Ye et al., 2000). The total annual emission rate of these dust
storms in Northern China is about 25 million tons (Xuan et al.,
2000). Small dust particles from these sandstorms can cause
severe respiratory problems with complications, such as bacterial
infections (Karasov, 2000). Clearly, predicting plant species
distribution across the region is fundamental to a comprehensive
understanding of the ecosystem function and feedbacks to the
human disturbances and climatic change. Conventionally, species
richness is quantified through ground surveys — a daunting task
for a large province like Inner Mongolia, which covers an area of
1.18 million km2. Research on species richness–productivity
relationships has been conducted on 24-year datasets in Inner
Mongolia (Bai et al., 2004) showing a positive relationship
between richness and ecosystem stability as well as on the effects
of land use on species richness and productivity (Zhou et al.,
2006), but there are no reported results at the regional level. A
practical, objective, and cost-effectivemethod to successfullymap
plant distribution is to use the Earth Observation (EO) data that
provide regional coverage with high temporal resolution (Ceccato
et al., 2001; Fensholt & Sandholt, 2003).

Climatic factors like temperature, precipitation and evapo-
transpiration (ET) have long been the predictors of choice to
successfully explain spatial variations in species richness (Francis
& Currie, 2003; Sarr et al., 2005). Additionally, ecosystem
productivity has shown good correlation with species diversity, as
it is the integrative expression of factors such as, topography, land
use, disturbance, and soil nutrients (Tilman, 1996). Hawkins et al.
(2003) found that productivity was better than annual climatic
predictors for predicting species richness. NDVI has been widely
used as a surrogate measure of net primary production (NPP) and
proven to be useful within the context of species richness–energy
hypothesis (Oindo & Skidmore, 2002). Other authors questioned
the use of NDVI alone in understanding ecosystems composition
and functions and called for breaking with the traditional NDVI-
based doctrine by including other biophysical variables such as
EVI, surface temperature, moisture, vegetation chemistry (Huete
et al., 2002; Qi et al., 2002; Fensholt &Sandholt, 2003; Xiao et al.,
2005; Ollinger et al., 2005). However, the greatest challenge in
developing predictive models comes from availability of spatial
databases for species distribution. For this study, we created a
spatial database based on records of vascular plant species from
theFlora of InnerMongolia (Ma, 1989, 1990, 1993, 1994, 1998).

In recent times, the ability to predict plant species richness at
the regional level has improved owing to the availability of
satellite derived biophysical variables from sensors such as
NASA's Moderate Resolution Imaging Spectroradiometer
(MODIS). MODIS-derived biophysical variables have global
coverage and are readily available online (MODIS EVI/GPP
productivity estimates, Huete et al., 2002; Running et al., 2004).
In addition, water content indices such as the Land Surface
Water Index (LSWI) and Normalized Difference Senescence
Index (NDSVI) can be calculated from surface reflectance
(Ceccato et al., 2002a,b; Xiao et al., 2005). We evaluate the use
of metrics derived from growing season composites of MODIS
EVI, MODIS-derived gross primary production (GPP) as well
as water content indices to explain spatial distribution of species
in Inner Mongolia, for different biome types. We expected that
these metrics would result in improved predictive models of
species diversity, which increases with variation in vegetation
heterogeneity and water availability.

Recent studies that used MODIS EVI to predict species
richness did not find a parabolic relationship at the regional level
(Waring et al., 2006), owing to annual compositing of predictors,
suggesting that such unimodal relationship can be found at finer
spatial scales (Swenson & Waring, 2006). The current study
demonstrated that species richness counts at the regional levels
as well as in the grassland biomes showed linear relationships
with biophysical predictor variables that differed by biome and
life form. The species richness in the desert biome showed
negative linear relationships with productivity and water content
estimates for plant life forms such as shrubs and perennial herb
species as compared to the grassland and forest biomes.

2. Methods

2.1. Study area

Inner Mongolia lies between 37°01′–3°02′N and 95°02′–
123°37′ E and is the third largest province in China (Fig. 1) with
elevation that varies between 86 and 3522 m. The province is
characterized by an arid to semi-arid continental climate (Yu
et al., 2003) with strong climatic gradients and varied land use
practices (Fig. 1). The principal mountain ranges are the Greater
Hingaan Mountains in the east and the Yinshan and Langshan in
the central part. Deserts include the Gobi desert in the
northwest, Mu Us and Hobq deserts, south of the Yellow
River, and the Tengger and Badain Jarian desert in the west,
which cover 40.03% of the province (Table 2). Precipitation
decreases and temperature increases as one moves from east to
west. The precipitation in the northeast exceeds 400 mm (Ellis,
1992) and is a transitional zone where the steppes meet the
Greater Hingaan Mountains (Yu et al., 2003), which are covered
by deciduous forest (0.23 million km2, 19.7% of the region). It
is presently dominated by irrigated agriculture (Yu et al., 2003)
in some areas. The north central region of Inner Mongolia
borders the Gobi desert and is dominated by the semi-arid
steppe with annual rainfall less than 100 mm (Yu et al., 2003).
The annual mean, minimum and maximum temperature in the
temperate grasslands (40.23%) are 1.6, −18.3, and 18.7 °C,
respectively, with an annual precipitation of 385 mm of which
67% falls between June and August (Zhou et al., 2006). The
growing season for perennial species in Inner Mongolia runs
from April to September, whereas the annuals germinate from
April to July depending on the soil moisture content, and
following rain events (Bai et al., 2004).

Typical steppes and meadow steppes are the major types of the
grassland ecosystems found in Inner Mongolia, and are most
commonly used for grazing and animal production (Kang et al.,
2007). Typical steppe developed under semi-arid conditions with
annual precipitation under 350 mm, is capable of drought
tolerance, and includes Stipa grandis, Leymus chinensis, and
multiple species of Artemisia and Festuca. Meadow Steppe,
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which is more productive than typical steppe (Yu et al., 2003)
developed in areas with moist fertile soils rich in organic matter
with annual precipitation of 450 mm, include Stipa baicalensis,
L. chinensis, andCleistogenes mucronata (Kang et al., 2007). The
desert steppe is the most arid ecosystem, with the least biomass
(Yu et al., 2003) and is found in areas with annual precipitation
between 150 and 200 mm and has a typical continental semi-arid
climate (Kang et al., 2007). Some of the species found include
perennials such as Stipa krylovii, Stipa bungeana, and Artemisia
ordosica (Ellis, 1992; Cheng et al., 2001b). Cropland and forest
plantations occur along the riversides, but as isolated patches
across the sandy steppe matrix (Zhang, 1994).

2.2. Species distribution and richness

Plant distribution in Inner Mongolia is strongly influenced by
climate conditions and human disturbances. The only available,
yet comprehensive, plant species database available is provided in
theFlora of InnerMongolia (Ma, 1989, 1990, 1993, 1994, 1998).
These five volumes were developed over a period 40+ years since
the 1950s by a research team from several institutions who
conducted intensive and frequent field surveys of the entire
province (Ma, 1989). Each species is described by its taxonomical
characteristics, life form, and distribution by county. From these
publications, we entered each species, its life form, and county
into a spreadsheet file for each of the 2562 species recorded.
Vascular plant species were divided into five life forms based on
the position of the apical bud with respect to the surface of the
ground (Raunkiaer, 1934), including (1) Phanerophytes: woody
plants with the shoot apices exposed around 1–2 m above the
ground; (2) Chamaephytes: shrubs whose apical buds are borne
close to the ground; (3) Hemi-cryptophytes: perennial herbaceous
plants with the apical bud on the surface of the ground;
(4) Cryptophytes: other perennial herbaceous plants with under-
ground tissues such as rhizomes, bulbs and tubers; and
(5) Therophytes: annuals plant with complete life cycle within a
season. All abbreviations are provided in Table 1.

2.3. MODIS-derived metrics

The climate of Inner Mongolia results in sparse ground cover
for most of the year and an increased canopy background noise
that reaches a maximum at intermediate levels (50%) of
vegetation (Huete et al., 2002). Previous species diversity studies
Table 1
List of variables and abbreviations used in this study

Full name Abbreviations

Enhanced vegetation index (0–1) EVI
Seasonal midpoint (0–1) EVImid

Gross primary production (kg C m−2) GPP
Land Surface Water Index (−1 to 1) LSWI
Normalized Difference Senescent Vegetation Index (0–1) NDSVI
International Geosphere Biosphere Program IGBP
Land use/land cover LULC
Standard error SE
Standard deviation SD
Species richness SR
used NDVI as a surrogate of productivity as the independent
variable (Oindo & Skidmore, 2002), but EVI has been proposed
as a better choice as it is not sensitive to soil/atmospheric effects
and adjusts the red wavelength as a function of the blue
wavelength to minimize brightness related soil effect (Huete
et al., 1997, 2002). The MODIS 16 day EVI is calculated as:

EVI ¼ Gd
qNIR � qred

qNIR � c1dqred � c2dqblue þ L
ð1Þ

by the MODIS Data Processing System, or MODAPS at the
NASA Goddard Space Flight Center, where, ρNIR, ρred, and ρblue
are atmospherically corrected surface reflectance, L is the canopy
background brightness correction factor, c1 and c2 are the
atmospheric resistance coefficients for red and blue bands,
respectively, and G is the gain factor. The coefficients adopted in
the EVI algorithm (Huete et al., 2002) are: L=1, c1=6, c2=7.5,
and G (gain factor)=2.5.

MODIS-derived 16-day composite vegetation indices
(MOD13A1) at 500 m resolution were acquired from the EOS
data gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/),
between March and November of 2005. The 8-day composites of
GPP (MOD17A2) as well as surface reflectance (MOD09A1)
were also downloaded for the same period, and covered the entire
province of Inner Mongolia. The 500 m resolution, surface
reflectance product consists of seven spectral bands that include
visible, near infrared, and short wave infrared wavelengths. These
data were reprojected from the native Sinusoidal projection to the
Albers equal area projection using the MODIS reprojection tool
and nearest neighbor method resampling. Growing season
(average) composites of MODIS 16 day EVI and 8 day GPP
products were produced to further smooth inter-annual variation.
The seasonal midpoint metric, which represents the active
growing season and is sensitive to site-specific changes in EVI
range and local variations in LAI and chlorophyll concentration,
was obtained by calculating the annual maximum, mean and
minimum EVI and then adding the annual mean to the minimum
(Waring et al., 2006).

2.3.1. Productivity and vegetation metrics
GPP is the fixation of light energy into chemical compounds

by plants – the primary producers – and should be affected by
community or biome species composition. The MODIS sensor
has enabled the generation of the first global GPP datasets based
on the premise that solar radiation and vegetation biophysical
parameters can determine GPP (averaged to 8 days at 1 km
resolution, Running et al., 2004). We used the growing season
composites of MODIS-derived 8-day MOD17A2 GPP product
(Running et al., 2004) and the 16-day EVI (MOD13A1) as
direct and indirect measures of productivity, respectively.

The standard deviations of GPP (GPPSD) and EVI (EVISD),
across the province (i.e., spatial variation), were used as surrogate
measures of vegetation heterogeneity (Oindo & Skidmore,
2002), whereas the mean and maximum values were used to
represent primary productivity. A positive relationship
between species richness (SR) and productivity has been
reported (Tilman, 1996), although the relationship may dif-
fer among ecosystems and is dependent of spatial scales

http://edcimswww.cr.usgs.gov/pub/imswelcome/
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(Mittelbach et al., 2001). At local scales, the SR–productivity
relationship can be considered to be ‘unimodal’, with
maximum species richness at intermediate levels of produc-
tivity while other studies report a positive or negative linear
relationship between species richness and productivity at
broad, regional scales (Waide et al., 1999). Published results
have suggested that SR–productivity relationships varied
among ecosystems, taxonomic groups, and are often scale
dependent (Cardinale et al., 2000; Huston, 1999).

2.3.2. Land surface water content
Water availability, especially in the arid and semi-arid regions,

plays an important role in limiting plant biological (Ellis et al.,
2001) and ecosystem processes (e.g., carbon fixation, plant
growth, respiration, production, Sala et al., 1997; Ehleringer et al.,
1999; Dube & Pickup, 2001). In semi-arid regions, different plant
life forms use water from different soil layers, with different
intensity (Schlesinger & Ehleringer, 2001; Schenk & Jackson,
2002). Herbaceous plants in arid environments compete for water
resources in upper soil layers, while woody plants have a greater
proportion of roots in deeper layers, and therefore take up a
greater amount of water (Schenk & Jackson, 2002; Snyder &
Williams, 2003). As a result of drought and frequent overgrazing,
the grasslands are invaded by desert shrubs which are less water
efficient than the herbaceous cover (Schlesinger et al., 1996).
Inner Mongolia is largely an arid and semi-arid region (N80%)
with degraded grassland ecosystems (Jiang et al., 2006) and it is
therefore critical to include water content indices in predicting
species richness. The MODIS-derived GPP and EVI (Waring
et al., 2006) provide good estimates of productivity in the forest
and grassland biomes, but may not be a good indicator of
productivity for the arid desert and semi-arid grasslands as they
are based on light use efficiency (Monteith, 1972), but not water
stress (Fensholt & Sandholt, 2003).

Land Surface Water Index (LSWI), recently used in mapping
forest cover in China along with NDVI (Xiao et al., 2002) and
EVI in the mapping temperate grasslands in East Asia (Boles
et al., 2004), is calculated to emphasize the water influence on
species diversity. As leaf water content increases, reflectance in
the NIR and SWIR bands decreases due to absorption (Ceccato
et al., 2001). The spectral response in the short wave infrared
band increases when the vegetation senesces due to loss of
water in leaf tissue (Tucker, 1980). Research efforts to estimate
leaf water content usually employ vegetation indices that
combine spectral reflectance data in two or more wavelengths
(Ceccato et al., 2002a,b). Some of these include the normalized
difference water index (NDWI), which was developed to
quantify leaf equivalent water thickness (Gao, 1996), LSWI
(Jurgens, 1997; Xiao et al., 2005), and NDSVI (Qi et al., 2002).
The MODIS surface reflectance data have one near infrared
band (1230–1250 nm) and two short wave infrared or SWIR
bands (1628–1652 nm and 2105–2155 nm) that are sensitive to
leaf water content and soil moisture. Recent studies explored the
potential of SWIR (e.g., band 6, 1628–1652 nm) for vegetation
water content (Ceccato et al., 2001; Ceccato et al., 2002a,b;
Zarco-Tejada et al., 2003; Fensholt & Sandholt, 2003; Maki
et al., 2004). LSWI was calculated from surface reflectance as a
normalized ratio between band 2 (841–876 nm) and band 6
(1628–1652 nm), was developed for vegetation equivalent
water thickness (Xiao et al., 2005):

LSWI ¼ qred � qswirð Þ= qred þ qswirð Þ ð2Þ

where ρswir and ρred are atmospherically corrected surface
reflectance in the red (620–670 nm), shortwave infrared
(SWIR1: 1628–1652 nm) wavelength, respectively (Xiao et al.,
2005). In addition to LSWI, the Normalized Difference
Senescence Vegetation Index was also obtained from surface
reflectance and calculated as

NDSVI ¼ qswir � qredð Þ= qswir þ qredð Þ ð3Þ

where ρswir and ρred are atmospherically corrected surface
reflectance in the shortwave infrared (SWIR1: 1628–1652 nm)
and red wavelength (620–670 nm), respectively (Qi et al., 2002).
The 8-day LSWI and NDSVI products, sensitive to vegetation
water content, were composited through the growing season
(March to November) to smooth inter-annual variation (Table 2).

2.4. Statistical analyses

Statistical models were developed using stepwise linear
regression technique (S-Plus 6.1) with species richness (SR) at
the county level as the dependent variables and a total of 13
independent variables (Table 2). The species richness was further
studied as a function of life forms (Table 3). To improve the
predictive power of statistical models, the species richness was
stratified by proportion of land use/land cover (LULC) by using
the MODIS-derived IGBP classification (MOD12Q1) and biome
boundaries (Fig. 1) obtained from the World Wildlife Funds
(WWF) terrestrial eco-region dataset (Olson et al., 2001). Due to
intensive farming in southeastern part of Inner Mongolia,
croplandswere excluded from themodels for a repeated regression
analysis. We removed counties with N50% of croplands for
exploring the influence of this important land use practice.

In addition to stepwise linear regression, a spatial regression
technique called Conditional Autoregressive (CAR) model was
used to account for spatial autocorrelation (S+ Spatial Stats
module). The technique fits a linear model with spatial depen-
dence among neighboring counties.

3. Results

Bulbs and perennial herbs were found to be the major groups
across the region (70%) and within any biome (64.8–74.0%).
As expected, the forest biome has 6.98 species per 1000 km2,
while the desert and grassland biome have 2.51 and 3.94 species
for the same unit area, respectively (Table 2). Mean species
richness of shrubs was the highest in the desert biome and the
lowest in the forest biome (pb0.001); while species richness of
bulbs and perennial herbs was significantly higher in the
grassland and forest than the desert (p=0.0001; p=0.0027).
There was no significant difference in species richness of trees



Table 2
Statistical summaries of MODIS-derived metrics (independent variables) and species richness by life form (dependent variables)

Independent variables Dependent variables

EVI EVImid GPP LSWI NDSVI SR Shrubs Bulbs P. herbs⁎ Trees Annuals

Region (N=88) 1,153,181 km2

Mean 0.163 0.235 0.009 −0.065 0.344 337 9 106 126 24 66
Minimum 0 0 0 −0.309 0 165 0 0 0 0 0
Maximum 0.480 0.701 0.035 0.743 0.610 822 37 328 300 90 117
SD 0.088 0.105 0.007 0.105 0.106 148 8 64 58 18 16
Total 2562 118 834 959 320 331
Of the total (%) 100 4.61 32.6 37.4 12.5 12.9

Desert biome (N=28) area: 461,658 km2 (40.03%)
Mean 0.152b 0.141c 0.003c −0.091b 0.267c 277b 16a 69b 100b 22a 65a

Minimum 0 0 0 −0.150 0 187 2 46 65 6 50
Maximum 0.346 0.516 0.008 0.229 0.402 390 37 123 139 44 91
SD 0.045 0.052 0.001 0.053 0.040 66 10 18 23 11 11
Total 1161 79 311 441 138 192
Of the total (%) 100 6.8 26.8 38 11.9 16.5

Grassland biome (N=42) area: 464,369 km2 (40.27%)
Mean 0.201a 0.278b 0.007b −0.073b 0.389b 342ab 6b 115a 135a 23a 67a

Minimum 0 0 0 −0.125 0 165 0 52 59 4 50
Maximum 0.370 0.701 0.032 0.257 0.522 822 19 328 300 90 117
SD 0.095 0.075 0.002 0.125 0.083 153 4 61 59 18 15
Total 1813 55 639 672 208 239
Of the total (%) 100 3.03 35.3 37.1 11.5 13.2

Forest biome (N=18) area: 227,154 km2 (19.70%)
Mean 0.182ab 0.341a 0.014a 0.012a 0.441a 408a 7b 144a 154a 33a 71a

Minimum 0 0 0 −0.081 0 178 1 52 63 8 51
Maximum 0.378 0.693 0.026 0.311 0.567 767 17 318 280 71 105
SD 0.142 0.081 0.005 0.184 0.144 193 5 86 70 23 16
Total 1586 41 613 560 178 194
Of the total (%) 100 2.59 38.7 35.3 11.2 12.2

⁎Perennial herbs.

2023R. John et al. / Remote Sensing of Environment 112 (2008) 2018–2032
and annual herbs among the biomes (p=0.0868; p=0.386).
Proportion of shrub and annual herb species decreased from
desert to grassland and to forest biome, while proportion of bulb
Table 3
Statistical evaluation of different biophysical indicators and their metrics to
predict species richness (SR) in Inner Mongolia at the county level and with
counties with N50% cropland removed from the analysis

Inner
Mongolia

Species richness Life form

SR Shrubs Bulbs Perennial
herbs

Trees Annuals

All counties
(N=88)

GPPSD EVImid GPPSD GPPSD GPPSD LSWImax

LSWImax GPPSD NDSVISD LSWImax EVISD NDSVImax

R2 0.27⁎⁎⁎ 0.40⁎⁎⁎ 0.36⁎⁎⁎ 0.29⁎⁎⁎ 0.16⁎⁎ 0.11⁎⁎

SE 128 6 51 48 16 13
SE a 128 6 51 48 16 13

Counties w/
N50%
cropland
(N=75)

GPPSD EVImid GPPSD GPPSD GPPSD GPPSD
GPPSD LSWISD LSWImax

R2 0.28⁎⁎⁎ 0.41⁎⁎⁎ 0.43⁎⁎⁎ 0.34⁎⁎⁎ 0.13⁎⁎ 0.1⁎⁎

SE 129 6 50 47 16 13
SE a 126 6 49 46 16 13

⁎⁎pb0.01, ⁎⁎⁎pb0.001.
a Standard error of spatial conditional auto regressive (CAR) model.
species increased (Fig. 2). No significant difference was found
for the proportion of tree species among the three biomes. As for
MODIS-derived metrics, the regional mean (SD) EVI and GPP
values were 0.163 (0.088) and 0.009 (0.007); and the regional
mean (SD) LSWI and NDSVI (i.e., surrogates for water content)
values were −0.065 (0.105) and 0.344 (0.106), respectively
(Table 2). However, there were significant differences in EVI
among the biomes with the highest values in the grassland biome
and the lowest in the desert (p=0.0028). LSWI was significantly
higher in the forest biome than in the grassland and desert
(pb0.0001). GPP, EVImid and NDSVI increased from desert to
grassland and to forest biome (pb0.0001).

The most important variables for species richness prediction
(for all counties, N=88) were GPPSD and LSWImax (Fig. 4a),
which showed positive, linear relationship (R2 =0.27, pb0.001).
Excluding counties with N50% cropland (N=75) resulted in a
positive linear relationship (Fig. 5a; R2 =0.28, pb0.001)
between species richness and GPPSD (Table 3.). The spatial
CAR regression model fit for all counties returned the same
results (Table 3).

The predictive models were improved significantly when the
species richness was divided by life forms. The variation in
species richness of shrub species was negatively correlated
(Fig. 4b) with seasonal EVImid and a positive linear relationship
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with GPPSD (R2 =0.40, pb0.001). The bulb richness was
positively correlated (Fig. 4c) with GPPSD, and NDSVISD
(R2 =0.36, pb0.001). The variation in species richness of
perennial herbs was explained by a positive linear relationship
(Fig. 4d) with GPPSD and LSWImax (R2 =0.29, pb0.001).
However the species richness of trees and annual herbs could
not be explained as well as other life forms (R2 =0.16 and 0.11
respectively, pb0.01). The tree species had a positive linear
relationship with GPPSD, and EVISD whereas annual herbs had
a positive linear relationship with LSWImax and NDSVImax

(Fig. 4e,f).
Predicting species richness by life form improved when

agricultural land was excluded from the analysis. Species
richness of shrubs showed a negative linear relationship (Fig. 5b)
with EVImid and a positive linear relationship with GPPSD
Fig. 2. Species richness distributions at county level include: a) all species, b) shrubs
maps were developed based on species distribution database at county level from F
(R2 =0.41, pb0.001). Bulb species richness was explained by a
positive relationship (Fig. 5c) with GPPSD and LSWISD
(R2 =0.43, pb0.001). The predictive models for perennial
species were improved slightly (R2 =0.34, pb0.001) with
species richness being positively related to GPPSD and LSWImax

(Fig. 5d). The model for species richness of trees and annual
herbs did not improve (Table 3) after agricultural land had been
removed and could not be explained as well as other life forms
(R2 =0.13 and 0. 11 respectively, pb0.01). The spatial CAR
model fit after counties with N50% croplands were excluded
showed minimal change for all species as well as different life
forms (Table 3).

Our predictions were further improved (Table 4) by
stratifying the species richness by biome (Fig. 1). In the desert
biome, species richness count was explained by a negative
, c) underground bulbs/corms, d) perennial herbs, e) trees, and f ) annuals. These
lora of Inner Mongolia (Ma, 1989, 1990, 1993, 1994, 1998).
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relationship (Fig. 6a) with LSWIavg, and positive linear
relationship with GPPmax (R2 =0.61, pb0.001). The variation
in species richness by life form in the desert biome was best
explained by a negative relationship (Fig. 6b) with seasonal
midpoint in shrub species and a positive relationship (Fig. 6d)
with NDSVImax in bulb species (R

2 =0.53, and 0.22 respectively,
pb0.01). Species richness of perennial herb species was
explained by negative linear relationships (R2 =0.46, pb0.01)
with EVISD and EVImax (Fig. 6c). The spatial CAR model fit for
the desert and grassland biome showed minimal change for all
species as well as different life forms (Table 4).
Fig. 3. Metrics of MODIS-derived biophysical variables obtained from annual composi
midpoint EVI, d) standard deviation of GPP, e) annual mean LSWI, f ) standard deviat
In the grassland biome (Fig. 7a), species richness was
explained by a positive linear relationship with GPPSD and
negative relationship with GPPavg (Fig. 7a; R

2=0.30, pb0.01).
When species richness was studied by life form, perennial herb
species showed a positive relationship with GPPSD and negative
relationship with GPPavg (Fig. 7c; R2=0.34, pb0.001). The
annual herb species richness showed a positive linear relationship,
with GPPSD (Fig. 7d; R2=0.20, pb0.01), while bulb species
richness was explained by a positive linear relationship with
GPPSD and a negative relationship with EVImid (Fig. 7b; R

2=0.
40, pb0.01). The species richness of shrubs was positively
tes in 2005 include: a) annual mean EVI, b) standard deviation of EVI, c) seasonal
ion of LSWI, g) annual mean NDSVI, and h) standard deviation of NDSVI.
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correlated with GPPSD (R2=0.27 respectively, pb0.01, Fig. 7e).
In the forest biome, variation in species richness was explained by
a positive linear relationship (Table 4) with NDSVImax (R

2=0.26,
pb0.01). Species richness of trees and perennial herbs showed
positive linear relationships with NDSVImax (R

2=0.28 and 0.31,
respectively, pb0.01).

4. Discussion

Land use/cover changes as well as climate change constitute
two major threats to biodiversity (Higgins, 2007), which together
compound the threat to biological systems. Anthropogenic
modification in urban, rural and agricultural areas createmigratory
barriers to plant species, which might need to move on account of
that climate change. The shifting of species ranges in response to
climate change means that there would be a redistribution of
biological systems in light of new land use patterns resulting in
Fig. 4. Species richness as a function of MODIS-based productivity (GPP, GPPSD, EV
metrics across all species, (a) and for each functional group, b) shrubs, c) undergrou
factors were identified with a stepwise linear regression, with αb0.05 entry require
new orientation of species ranges. It is important to consider the
implications of future redistribution of climate and land use
patterns, as it will be critical to determine how biological diversity
respond to future change. Recent studies have documented such
change as species ranges have already begun to move in response
to the climate changes of the past century (Parmesan & Yohe,
2003). As greenhouse gas emissions continue, there will be an
increasing pressure on biological systems to move in order to
adapt to increasing extreme changes in climate (Higgins, 2007).
The classical methods for studying regional patterns of species
richness have constraints that produce a disagreement between the
scale of the study and the parameters measured (Levin, 1992).
Remote sensing data might be better suited to bridge the gap
between the scales of the processes and the observations
especially at regional scales (Fairbanks & McGwire, 2004).

Previous remote sensing studies on predicting species richness
were often based on image classification (i.e., identifying habitat
Imid and EVISD) and surface water content (LSWImax, NDSVImax and NDSVISD)
nd bulbs/corms, d) perennial herbs, e) tree species, and f ) annuals. The driving
ment.
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type) followed by a correlation of species richnesswith class types
(Behera et al., 2005; Saveraid et al., 2001). These methods, based
on habitat relationships, can be effective if intensive empirical
models exist for all patch types, but might not be efficient owing
to classification accuracy, context of class types (Seto et al., 2004),
or potential mismatch between species and a habitat (Pulliam,
2000). Recent efforts have included development of empirical
models between species richness and continuousmeasures of land
surface properties and their dynamics (e.g., maximum, mean and
standard deviation of NDVI; Seto et al., 2004), species richness
and vegetation heterogeneity (Oindo, 2002; Oindo & Skidmore,
2002), and of phenology metrics (EVImid; Waring et al., 2006).
The latter approaches allow us to examine the relationship
continuously across space (i.e., full coverage of the region), while
the distinct ecological properties of different biomes are
considered for selecting model form and predictive variables
(Seto et al., 2004). For example, if species richness were
hypothesized to have a positive relationship with ecosystem
production (Tilman et al., 1996), then GPP and associated
surrogate measures would be the natural choices for depicting
variables (Waring et al., 2006).

We found that Inner Mongolia region had a relatively low
GPP, EVI, LSWI and NDSVI mean in the desert and grassland.
EVI and LSWI mean values in the grassland and desert steppe
regions of Temperate East Asia were 0.2 and −0.07 with
maximum values of 0.35 and 0.2, respectively (Boles et al.,
2004). These values compared well with our values of mean
Fig. 5. Species richness as a function of MODIS-based productivity (GPPSD, EVImid a
counties with N50% land under agricultural use (a), and for functional groups, b) sh
identified with a stepwise linear regression, with αb0.05 entry requirement.
annual EVI for grassland and desert steppe (0.201 and 0.152
respectively, Table 2). The maximum EVI values for the two
biomes were 0.346 and 0.370, respectively, and also closely
matched published values (Boles et al., 2004). Similarly, our
estimates of LSWI in the grassland and desert biomes closely
matched the published values mentioned above, with mean
annual LSWI for the two biomes being −0.091and −0.073,
respectively. The maximum LSWI values for the grassland and
desert biomes were 0.257 and 0.229 (Table 2) and were close to
the published maximum (0.2) for temperate East Asia (Boles
et al., 2004). MODIS GPP annual mean estimates from our
study for desert and grassland biome in Inner Mongolia was 3
and 7 g C m−2 respectively, with annual maximum estimates
being 8 and 19 g C m−2. Published MODIS GPP estimates
(Zhao et al., 2005) of the world's grasslands were 396 g C m−2

year−1. However, annual MODIS GPP estimates in Inner
Mongolia were closer to the published values based on local
studies carried out between 15 and 20, August 2004 in Duolun
County, Inner Mongolia. The estimates of GPP ranged between
10 and 70 g C m−2 and included grazing exclusion sites as well
as heavily grazed sites with biomass removal (Zhou et al.,
2006). There exists a gradual change in climate as one moves
from the southwest to the northeast of the region (Fig. 3). In
addition, there also appeared an increasing trend in proportions
of species richness in four of the five life forms with shrubs as
the only exception (Fig. 2), which decreases as one moves from
the desert biome to the grassland and forest biomes.
nd EVISD) and surface water content (LSWISD and LSWImax,) metrics excluding
rubs, c) underground bulbs/corms, d) perennial herbs. The driving factors were



Table 4
Statistical evaluation of different biophysical indicators and their metrics to predict species richness by biome in Inner Mongolia

Biome Species richness Life form

SR Shrubs Bulbs Perennial herbs Trees Annuals

Desert (N=28) LSWIavg EVImid NDSVImax EVISD NDSVISD LSWISD
GPPmax EVImax LSWImax LSWImax

LSWImax EVImax EVImid

EVImax

R2 0.61⁎⁎⁎ 0.53⁎⁎⁎ 0.22⁎ 0.46⁎⁎⁎ 0.46⁎⁎ 0.53⁎⁎⁎

SE 45 7 15 17 8 8
SE a 47 5 13 14 7 7

Grassland (N=42) GPPSD GPPSD GPPSD GPPSD GPPSD GPPSD
GPPavg GPPavg EVImid GPPavg

R2 0.30⁎⁎ 0.27⁎⁎ 0.40⁎⁎⁎ 0.34⁎⁎⁎ 0.12⁎ 0.20⁎⁎

SE 131 3 48 49 17 13
SE a 128 3 47 48 17 13

Forest (N=18) NDSVImax – NDSVISD NDSVImax NDSVImax –
R2 0.26⁎ – 0.25⁎ 0.31⁎ 0.28⁎ –
SE 171 – 76 60 20 –
SE a 166 – 67 59 16 –

*pb0.05, **pb0.01, ***pb0.001.
a Standard error of spatial conditional auto regressive (CAR) model.
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As expected, the grassland biome had the highest species
richness among the three biomes with perennial herbs and bulb
species as the dominant life forms, which are twice the number of
the desert biome, likely owing to water availability (i.e., the major
limiting factor in the desert). The tree species in the grassland
biomes, however, were more in number as compared to the desert
and forest biomes, while annuals were more in number but less in
proportion (Table 2). Shrub species were fewer in number as
compared to the desert biome. This is likely because the more
favorable conditions promote grass species which maintain a
higher competitive edge (Cheng et al., 2007). For the forest
biome, the LSWI andNDSVImean valueswere higher than those
in the other biomes (Fig. 3; Table 2). The higher elevation in some
areas of the biome (e.g., Greater Hingaan Mountains) suggests
greater precipitation and less evapotranspiration. Consequently,
the proportions of shrub species and annual herb species were
lower compared with other biomes.

The power of the developed models increased significantly
(Tables 2 and 3) when the study area was stratified by desert,
grassland, and forest biomes. The exclusion of counties with
N50% cropland further increased the contrast among the natural
cover types. This is not surprising, as deserts, grasslands, and
forests have very different climatic and hydrological regimes
that have to be explained independently. In addition, the models
were improved when the species were studied by life forms,
thus supporting the hypothesis that the SR–productivity rela-
tionship is taxonomically dependent. As the grain of observa-
tion increased, the SR–productivity relationship decreased and
this may be accounted for by the confounding effects of
biophysical variables that are not separated by biome or
functional groups such as life forms. Our initial hypothesis of a
strong sensitivity to water availability across the region was
rejected when counties with N50% of land under agricultural
use were excluded. The water use in irrigated agriculture does
not follow natural biophysical mechanisms (Yu et al., 2003) and
therefore the agricultural lands were confounded with the
patterns observed in the natural land cover classes.

Water availability did have a significant effect on SR in the
desert and grassland biomes (Table 4), but shrubs, trees, corms,
and annuals differed in the moisture sensitivity (Fig. 6). In Inner
Mongolia, xerophytic grass, herb and shrub species dominate
and are characteristic of successional stages of desertified
communities (Cheng et al., 2001b; Kang et al., 2007). Though
species richness of shrubs (Fig. 2b) counts only 6.80% of all
species (Table 2), the desert biome was dominated by open
shrubland cover type (Fig. 1). The shrub species showed a
negative relation with seasonal midpoint EVI in the desert
biome, while trees and annuals increased with water avail-
ability but decreased with its variance (Fig. 6b,e,f). This can be
attributed to local hydrological and landform influences such as
river systems (e.g., Huang he near Baotou, Fig. 1) and oasis
(e.g., the Ejina oasis). The bulb species were constrained by
water availability (Fig. 6d) and can be explained by the low
species richness count within the desert biome as compared to
the forest biome and a portion of grassland biome in the north
east of the province. In grasslands, the effect of moisture on
species richness was significant, but the primary correlates were
measures of seasonal variability (GPPSD and EVISD; Table 4;
Fig. 3). This implies moisture limitation on SR, and corrobo-
rates with earlier studies that have suggested that inter-annual
variation in the timing of precipitation may affect productivity
(Xiao et al., 1995, 1996).

Our study has several limitations that prohibit us from
more confident predictions of plant species richness in Inner
Mongolia. The foremost constraint is the plant distribution
database obtained from the Flora of Inner Mongolia. These
published volumes are by far, the most comprehensive database
in China following 40+ years field surveys lead by a large team



Fig. 6. Species richness as a function of MODIS-based productivity (GPPmax, EVImid, EVImax and EVISD) and surface water content (LSWIavg, LSWImax, NDSVImax and
NDSVISD)metrics in the desert biome at: a) county level andwith life forms that include, b) shrubs, c) underground bulbs/corms, d) perennial herbs, e) trees, and f ) annuals.
The driving factors were identified with a stepwise linear regression, with αb0.05 entry requirement.
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in University of Inner Mongolia (Ma, 1989, 1990, 1993, 1994,
1998). Yet only presence or absence of a species by county was
recorded. We suspect some inconsistency in developing the
database among counties near the provincial capital; Huhehot,
where the university is located, showed higher species richness
counts when compared with other counties in the region (Fig. 2).
There is also an element of uncertainty whether the species
tabulated in the survey are still prevalent or extinct. For example,
we were unable to assess the contribution of each species, but
assumed all had an equal importance. Finally, availability of
remote sensing products, their use (i.e., MODIS data in 2005
only), and some aspects of data analysis are additional pitfalls
of this study. We could, however, explore the use of all avail-
able MODIS products since 1999 to provide additional long-
term means of remote sensing products that might better match
the ground data. Clearly, there exists a mismatch between the
time the species richness data (dependent variables) and
MODIS data (independent variables) were acquired.

Future research should include the prediction of species
richness using remote sensing products in the context of
functional groups (e.g., nitrogen fixation). For example, species
richness predictive models could be used in monitoring the
spread of shrubs with higher water use intensity as well as toxic
herbs which replace native grass species in the Ordos plateau
(Cheng et al., 2001a,b). Results from these models can assist
conservation efforts by identifying areas that contain high
species richness, but are not currently protected. This could be
achieved in a Geographic Information System (GIS) through



Fig. 7. Species richness as a function of MODIS-based productivity (GPPSD, GPPmean, EVImid, and EVISD) and surface water content (NDSVImax) metrics in the grassland
biome at: a) county level, andwith life forms that include, b) underground bulbs/corms, c) perennial herbs, d) annuals, and e) shrubs. The driving factors were identifiedwith
a stepwise linear regression, with αb0.05 entry requirement.
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overlaying current conservation areas and land use data with
predicted levels of species richness for different biomes and life
forms types. Explorations of long-term MODIS and other
remote sensing products in predicting species diversity should
be continued to improve confidence in the predictive models.
Finally, land use practices (e.g., grazing, cropping, harvesting)
and potential influences of climate change have been shown to
have unique consequences on different functional of taxonomic
groups (Bao et al., 2004) and, hence, must be accounted for in
the future species richness studies.

5. Conclusions

Based on the most comprehensive, regional species database
and remote sensing products, we conclude that GPPSD and
water availability were the two most important variables for
predicting species richness in Inner Mongolia, although other
MODIS-derived metrics were occasionally selected as signifi-
cant independent variables. Our confidence levels were further
enhanced when models were developed based on biome and life
form. The predictive power also increased when species
richness was examined when the counties with N50% croplands
were excluded. The coherent relationships between the
combinations of productivity (MODIS GPP, EVI) and vegeta-
tion water content (LSWI, NDSVI) and species diversity may
have potential applications in other similar regions. Future
research is needed to develop more attributes of individual
species in the region, including their roles in communities, to
improve the models predictability for relevant basic and applied
research (e.g., conservation of species in the region).
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