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A New Multicriteria Risk Mapping Approach Based on a
Multiattribute Frontier Concept

Denys Yemshanov,1,∗ Frank H. Koch,2,# Yakov Ben-Haim,3 Marla Downing,4 Frank Sapio,4

and Marty Siltanen1

Invasive species risk maps provide broad guidance on where to allocate resources for pest
monitoring and regulation, but they often present individual risk components (such as cli-
matic suitability, host abundance, or introduction potential) as independent entities. These
independent risk components are integrated using various multicriteria analysis techniques
that typically require prior knowledge of the risk components’ importance. Such informa-
tion is often nonexistent for many invasive pests. This study proposes a new approach for
building integrated risk maps using the principle of a multiattribute efficient frontier and an-
alyzing the partial order of elements of a risk map as distributed in multidimensional criteria
space. The integrated risks are estimated as subsequent multiattribute frontiers in dimensions
of individual risk criteria. We demonstrate the approach with the example of Agrilus bigut-
tatus Fabricius, a high-risk pest that may threaten North American oak forests in the near
future. Drawing on U.S. and Canadian data, we compare the performance of the multiat-
tribute ranking against a multicriteria linear weighted averaging technique in the presence
of uncertainties, using the concept of robustness from info-gap decision theory. The results
show major geographic hotspots where the consideration of tradeoffs between multiple risk
components changes integrated risk rankings. Both methods delineate similar geographical
regions of high and low risks. Overall, aggregation based on a delineation of multiattribute
efficient frontiers can be a useful tool to prioritize risks for anticipated invasive pests, which
usually have an extremely poor prior knowledge base.
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1. INTRODUCTION

Pest risk maps, which depict the likelihood
that an invasive organism will be introduced, es-
tablished, and have a substantial impact in areas
of interest, have been recognized as valuable tools
for assisting with strategic decisions regarding the
management of biological invasions.(1,2) Federal,
state, and provincial land management and regula-
tory agencies use these maps to prioritize resources
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for surveillance, quarantine, control, and other
activities in response to invasive species.(3–5) Pest
risk maps are also powerful visual communication
tools that help to raise awareness about new invasive
threats and to resolve public concerns caused by
regulation.(2)

Despite their appeal, constructing risk maps for
newly detected or anticipated invaders is a difficult
prospect. Often, the amount of knowledge about an
emerging pest threat is insufficient to understand ba-
sic interactions between the likely drivers of invasion
and estimate the long-term establishment potential
of an organism.(6) So, instead of applying complex
dynamic spread models that require many parame-
ters about the organism’s behavior, analysts end up
utilizing simple static models(2,6) and estimating in-
dividual risk components (such as climatic suitabil-
ity or susceptible host range) separately using dif-
ferent methodologies and available data. Analysts
subsequently face the challenge of aggregating these
static realizations of individual risk components into
a single, comprehensive pest risk map for use by
decisionmakers and stakeholders.(7)

In the field of risk analysis, integration of mul-
tiple information sources is often accomplished via
a weight-of-evidence (WOE) framework.(8,9) WOE
includes a variety of approaches such as listing mul-
tiple lines of evidence(10) and integrating multiple
lines of evidence into a single performance measure
using indexing,(11) scoring,(12) or other statistical
methods.(8,13)

Scoring, which is the assignment of weights to
various lines of evidence, is one of the simplest
and most popular methods in the WOE toolset.
The weights assigned to the individual lines of ev-
idence are often combined to develop a numerical
WOE score.(8,9) Weights can be specified as numer-
ical values assigned to the lines or by the propor-
tion of the final index value that each line represents.
Scoring, however, does not apply formal probabilis-
tic techniques to quantify judgments regarding the
weights. Alternatively, multicriteria decision analy-
sis (MCDA) uses likelihoods to synthesize weights
of evidence. In general, the MCDA process includes
four basic steps:(9,14) (1) formulating main and al-
ternative objectives; (2) developing the criteria and
metrics; (3) measuring performance of decision alter-
natives with respect to the main decision objectives
using the criteria and metrics; and (4) information
synthesis.(8,9) In general terms, MCDA techniques
aim to determine a preference order among a num-
ber of available options in a multidimensional crite-

ria space based on various types of information ob-
tained from best professional judgments, empirical
measurements, or other sources.(14–17) For each crite-
rion, a decisionmaker must provide a score, whether
in cardinal or ordinal scale,(18,19) and the multicri-
teria method is then used to aggregate the indi-
vidual criteria scores into an overall option pref-
erence/performance ranking (see more detailed re-
views in Figueira et al.(19) and Moffett and Sarkar(20)).

Linear weighted averaging (LWA hereafter)
represents one of the simplest score aggregation
methods.(18) When constructing a pest risk map com-
posed of j elements (i.e., map cells), the criteria (i.e.,
the independent risk components k = 1, . . . . , K) are
standardized to scores that are then combined by
weighted averaging into a continuous metric:(18,21)

Rj =
K∑

k=1

Zjkwk, (1)

where Zjk is the normalized value of criterion k for
element j, which falls within a common numeric in-
terval, [Zmin, Zmax], and wk is the normalized weight
for criterion k. Each criterion can be scored on a
fixed scale, for instance [0–10], with 10 represent-
ing the most undesirable outcome (or vice versa).(18)

To score each criterion’s original value range to a
common fixed scale a simple linear transformation is
often used. However, the rationale for doing so is
often unclear.(22) LWA also assumes a linear prop-
agation of uncertainty from individual criteria scores
to an aggregated metric, Rj. This makes the results
highly sensitive to the values of the scaling coef-
ficients and makes their derivation a critical and
knowledge-demanding step of the analysis.(12)

LWA techniques have been used by the Cana-
dian Food Inspection Agency (CFIA), USDA
APHIS, and USDA Forest Service for integrated risk
assessment of new invasive species.(23,24) For exam-
ple, the CFIA technique estimates two independent
risk criteria, (1) the likelihood of introduction and (2)
the potential impact of introduction for a new pest,
and scores them into a semiquantitative scale ranging
from 0 (extremely low risk) to 3 (high risk). The es-
timate of the potential impact includes independent
estimates of four major risk criteria, including the
pest’s establishment and spread potential as well as
its economic and environmental consequences. The
aggregated risk rating is then calculated by linear
weighted averaging.

The USDA Forest Service, Forest Health Tech-
nology Enterprise Team used a somewhat similar
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technique to generate national-scale risk maps for
a number of nonnative forest pests.(24) The analysis
steps included acquiring spatial data to represent cri-
teria related to the pest’s introduction and establish-
ment potential, followed by subsequent rescaling of
each identified criterion to a 0–10 scale using linear
methods or according to specific thresholds selected
by a risk map steering committee. Then, the factors
describing the pest’s introduction potential were ag-
gregated in a single map using linear weighted av-
eraging. Similarly, factors related to the pest’s suc-
cessful establishment were combined. Finally, the
previous two analysis products were combined into
a “susceptibility potential” product.

Several alternative algorithms have been pro-
posed to estimate a set of weights wk.(16,19) Examples
include pairwise comparisons and outranking tech-
niques,(25,26) the analytic hierarchy process,(27) and
direct assignment.(28) Another approach employs the
multiattribute value concept(29) to build a single-
dimensional utility function that represents the pref-
erences of a decisionmaker and then uses it to eval-
uate the performance of multiple decision alterna-
tives. In most cases, estimation of the weighting co-
efficients wk requires some exogenous information
about their relative importance (i.e., in our case the
contribution of a particular risk factor to the success-
ful introduction of an invasive organism). However,
such knowledge is often unavailable for new or an-
ticipated (i.e., organisms that have high likelihood
of introduction but have not been detected recently)
invaders. As a result, determinations of weights are
rarely precise and are often limited to listing the
evidence or best professional judgments based on
experts’ anticipations of the invader’s behavior.(9,30)

Several approaches have been proposed to reduce
experts’ biases (such as constructed(31) or triangula-
tory(32,33) ranking techniques, representing experts’
beliefs as distributions(30) and their subsequent rank-
ings via stochastic dominance criteria,(30,34,35) or us-
ing fuzzy rules for multicriteria aggregation (36–38)),
but again, all of these modifications do not truly elim-
inate the need for prior knowledge about the individ-
ual criteria and their importance.

2. METHODS

2.1. Basic Concept

In this article we propose a new technique to syn-
thesize individual risk component maps that does not
require prior information about the criteria weights
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Fig. 1. The multiattribute efficient frontier concept (a two-
dimensional example, K = 2): N’, N2’, N3’—nested multiattribute
frontiers. Point S1 in the first multiattribute frontier N’ dominates
point S0 in the second frontier N2’ (i.e., S11 ≥ S01 and S12 ≥ S02 in
the criteria dimensions 1 and 2).

wk to aggregate the criteria scores into a single-
dimension performance metric (i.e., integrated pest
risk in our case). In short, we delineate nested multi-
attribute efficient frontiers in dimensions of individ-
ual criteria Zjk and use them to aggregate the criteria
scores. The method first depicts individual geograph-
ical locations j as a point cloud in the criteria space K
and then finds the first convex multiattribute efficient
frontier. In the context of a pest risk map, the points
on the first multiattribute efficient frontier represent
those locations (i.e., map cells) with the highest ag-
gregated risk combinations, such that no other points
exhibit combinations of risks higher than those of
the locations on the frontier (Fig. 1). We assign all
points on the efficient frontier an integrated risk rank
of 1. These points are then removed and a new ef-
ficient frontier is constructed with all points along
this second frontier assigned a rank of 2, and so on.
Essentially, the knowledge about risk criteria combi-
nations is drawn from a partial order of elements in
each risk criterion and the topology of the multiat-
tribute criteria space.

Formally, our approach addresses the particular
issue of ranking a vector of scores on an attribute
where the score on each attribute is only a rank, and
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may be subject to uncertainty. This situation is fairly
common when no information is available about how
the attributes rank versus one another (i.e., there is
no prior knowledge about wk) and therefore an an-
alyst wants to avoid using a compensatory linear av-
eraging approach(18) to determine the tradeoffs be-
tween the attributes or lexicographic techniques(39)

(which first focus on the performance on the most im-
portant attribute, then go to the next most important,
and so on).

We then compare the performance of an aggre-
gation technique based on the multiattribute frontier
ranking (MAF hereafter) with the traditional linear
weighted averaging (LWA) technique for the situa-
tion where knowledge about the criteria scores Zjk is
uncertain. We undertake a series of sensitivity analy-
ses to introduce uncertainties into the individual cri-
teria values and evaluate how they affect the robust-
ness of aggregated risk rankings to uncertainty in
both techniques.

2.2. Finding the Multiattribute Frontier

Consider a set of K risk maps, (K > 1, k =
1, . . . , K), each representing a particular aspect of
risk (i.e., a criterion) associated with an invasive or-
ganism (such as the likelihood of introduction, cli-
matic suitability, or abundance of a susceptible host).
Assuming that each risk map k consists of N indi-
vidual locations (i.e., map cells), each location j (j
∈ 1, . . . , N) can be represented as a point in K di-
mensions. The points that represent these individ-
ual map locations j can then be arranged as a K-
dimensional point cloud, �, where the position of
each point in the cloud is defined by the point’s val-
ues for the individual risk criteria k, k = 1, . . . , K. If
the k dimensions are oriented so their highest values
denote the most severe risks, then the outer convex
boundary of the point cloud � represents the com-
bination of the highest possible risks (i.e., boundary
N’ in Fig. 1). Essentially, this convex boundary rep-
resents a multiattribute efficient frontier of the point
cloud � that is defined by the points for which per-
formance with respect to one risk criterion cannot
be improved without sacrificing performance with re-
spect to at least one other criterion, a condition also
known as Pareto optimality.(40) For a set of N points
in a K-dimensional criteria space, the multiattribute
efficient frontier is outlined by the subset of the total
population, N′, that is nondominated by the rest of
the population (i.e., N – N′). The concept of a multi-

attribute efficient frontier can be further illustrated
using a simple two-criteria case (i.e., K = 2) (Fig.
1). For example, the points in the first multiattribute
frontier (N′) in Fig. 1 are nondominant to each other
but dominate the points in frontiers N2

′ and N3
′. In

a K-dimensional criteria space, a point S1 dominates
another point S0 when:

S1k ≥ S0k ∀ k= 1, . . . ,K and S1k > S0k for some k. (2)

The approach shares some conceptual details
with data envelopment analysis (DEA). Although
DEA is not a multicriteria analysis technique per se,
it uses the principle of delineating a multiattribute
efficient frontier when ordering a set of decision-
making choices.(41–44) DEA focuses mostly on the
performance evaluation of managerial choices in
production economics that use a common set of re-
sources and produce a common set of outputs.(41) In
particular, our technique has some similarities with
the “tiered” version of DEA (TDEA),(43) which eval-
uates nested multiattribute efficient frontiers to or-
der decision-making alternatives in dimensions of
multiple production inputs and outputs.

Finding the multiattribute frontier represents a
special case of the maximum vector problem that
allocates the nondominated subset of a multidi-
mensional set of vectors.(45) A similar procedure is
alternatively labeled a “skyline” operator.(46,47) The
concept has also been used in many theoretical ap-
plications such as the contour problem,(48) multiob-
jective optimization,(45,49) and computing the convex
hull of a multivariate data set.(50,51)

It is evident from Fig. 1 and Equation (2) that
the delineation of nested frontiers depends on a
partial order of individual data elements in the K-
dimensional criteria space. If any of the K crite-
ria have skewed or clustered distributions, this may
greatly reduce the capacity to delineate the frontier,
so normalization is effectively necessary. To address
this aspect, we follow the ranking standardization of
the score value along each criteria dimension k de-
scribed by Godfrey et al.(52) to satisfy the conditions
of sparseness and uniformity. The standardization
ensures that individual points in the K-dimensional
cloud (i.e., map locations j) will have distinct values
along any dimension k; preferably, the distribution of
point values along a given dimension will be as close
to uniform as possible.(52) For each criterion dimen-
sion k, we assign an ordinal rank rjk to each point,
0, . . . , φk – 1, where φk is the number of distinct
point values on dimension k. The lowest value on k is
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Fig. 2. Analysis summary
(a two-dimensional example, K = 2).

assigned a rank of 0 and so forth. The normalized
point values are then calculated as (rjk + 1) / (φk +
1). This transformation preserves the partial order of
elements and dominance relations in each criterion
dimension.

2.3. Building Integrated Risk Maps

Prior to ranking, we assigned unique identifiers
to each map unit and then converted units to the
points in K-dimensional criteria space (Fig. 2). Next,
we used Goldberg’s(53) ranking algorithm to delin-
eate multiattribute frontiers in the criteria space. The
method first finds N′, the initial set of nondominated
points (i.e., the first multiattribute frontier) from the
multicriteria point cloud �, assigns them rank 1, and
then removes these elements from � temporarily.
Next, a second nondominated subset, N2

′, is deter-
mined from the rest of �, assigned a rank of 2, and
temporarily removed, and so forth until every point
in � has been assigned a frontier rank. After the
ranking is complete, we used the points’ identifiers to
map the frontier ranks in geographical space (Fig. 2).

In order to compare different scenario realiza-
tions, we inverted and rescaled ordinal ranks to a
[0;1] range so the values close to 1 denote the first
frontier (i.e., the most severe combinations of risks)
and the ranks of the lowest frontiers were close to
0. Conceptually, the analysis is similar to the map
aggregation procedure described in Yemshanov
et al.(54)

2.4. Species of Interest

We demonstrate the approach with a risk map
for the oak splendor beetle, Agrilus biguttatus, a
significant pest of oak forests in Europe, Russian
Asia, northern Africa, and the Middle East.(55–57)

It is believed that A. biguttatus is one of the main
causes of oak decline in Europe(58) and is expected to
cause significant impact to natural and urban forest
environments if introduced into North America.(59)

A. biguttatus is most likely to encounter a suitable
climate for establishment in the continental United
States and southern parts of Canada and cause major
damage to oak species (Quercus spp.) as its primary
hosts.(55–57,59)

However, there is little knowledge available re-
garding the pest’s behavior in North America(60)

because the bulk of the quantitative information
about A. biguttatus comes from other regions over-
seas where the pest is already established. Hence,
instead of using a dynamic model of pest estab-
lishment (which would require providing many yet
unknown parameters about the pest’s behavior in
North America) we have selected a simple, static
model that is limited to the available knowledge
about the pest and predicts the most likely factors of
successful establishment of A. biguttatus populations.
Based on the scarce available information, a panel
of scientists (convened by the USDA Forest Service,
Forest Health Technology Enterprise Team for this
purpose) identified three major drivers of successful
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invasion: (1) the potential for introduction at North
American ports of entry receiving associated com-
modities from locations in the insect’s current range,
and at urban areas and distribution centers linked to
these ports; (2) the abundance of host (oak trees);
and (3) the potential degree of drought stress to host
trees during the late spring-early summer season. For
our study, we created three maps, each represent-
ing one of these risk criteria for A. biguttatus. The
maps (see online Appendix 1) encompass the en-
tire oak distribution range in the United States and
Canada. Among the three major factors of invasion,
host distribution is the only aspect particular to A.
biguttatus ecology (as suggested by limited knowl-
edge about the pest(59)). The other two criteria (i.e.,
drought stress and the potential for human-mediated
introductions) have been well recognized as common
contributors to alien forest insect establishments in
North America.(2,4)

The Canadian portion of the drought index map
was estimated as the standard deviations of the
Canadian climate moisture index (CMI)(61) from its
30-year average value. For the United States, we
determined drought status according to standard de-
viations of a similar moisture index(62) calculated
specifically for the period of late spring-early sum-
mer. The U.S. portion of the drought index map
was based on a weighted average of the drought de-
viations for the last 10 years and last 100 years in
the proportions 4:1 (to emphasize the importance of
more recent droughts). The Canadian portion of the
drought map was interpolated from 10-km resolution
data, while the U.S. portion was based on 4-km spa-
tial resolution data. These differences in the original
data and map interpolation methods explain the dif-
fering textural appearances of the U.S. and Canadian
portions of the map (Appendix 1A).

The host abundance map (Appendix 1B) was
derived from the USDA Forest Service, Forest In-
ventory and Analysis (FIA) database(63) for the
United States and the National Forest Inventory(64)

for Canada. The map depicts the distribution of oak
species abundance (in basal area units) across North
America inclusive of urban areas. We also used pre-
viously published oak species range maps(65) to de-
marcate the geographic extent of oak species distri-
bution in North America.

The U.S. portion of the pest’s introduction po-
tential map (Appendix 1C) was developed from (1)
the locations of principal ports of entry that receive
imports from countries where A. biguttatus is known

to be present, and from commodity categories that
have been historically associated with Buprestidae
interceptions; (2) major urban markets, to which
these associated commodities are primarily trans-
ferred; and (3) locations of distribution centers that
handle imported goods. In a geographic information
system (GIS), we applied an inverse cost distance
function(66) from the ports, major urban markets, and
distribution centers to project the pest’s introduction
potential in other (i.e., rural) locations. Unsurpris-
ingly, the map shows the highest risks of introduc-
tion for major-market urban areas and in the vicin-
ity of high-volume marine ports (Appendix 1C). The
Canadian portion of the map used similar informa-
tion except the data on distribution centers were sub-
stituted with urban population density at the level of
Census subdivisions within the municipal limits. We
used 2006 StatsCan population density data(67) and
the Canadian road geo-database(68) to map the loca-
tion of major urban markets.

2.5. MAF and LWA Risk Rankings in the Presence
of Uncertainty

We applied the concept of robustness to uncer-
tainty(69) to compare the performance of the MAF-
based and the MCWA aggregation techniques in
the presence of uncertainties in the criteria values.
For both methods, we used the three previously de-
scribed risk criteria data sets (i.e., drought stress, host
distribution, and introduction potential), which we
standardized to a range between 0 and 1. Because
the MAF aggregation does not use criteria weights
wk, we assumed equal weights (wk = 1) in the LWA
scenario to make a valid comparison.

To perform the comparison, we used an ap-
proach similar to that presented in Yemshanov
et al.(70) Briefly, our analytical framework for char-
acterizing robustness to uncertainty is based on the
principles of info-gap decision theory. An info-gap
decision model includes three basic components.
The “process model” describes what is known about
the phenomenon of interest and is deemed to be
the best (though uncertain) representation of its be-
havior; for this analysis, our “process model” con-
sisted of the input risk criteria, Zjk, and the risk ag-
gregation model (i.e., the MAF or LWA rankings).
The “uncertainty model” describes the unknown
variation in the structure, parameters, and assump-
tions of the process model. The process model is
also used to estimate a “performance requirement”
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metric that describes the outcome the decisionmaker
wants to achieve (for example, a certain minimum
risk threshold).

Our analysis started from a “nominal” scenario
utilizing the current estimates for our three risk cri-
teria, Zjk (i.e., the criteria maps in Appendix 1). Our
corresponding model for uncertainty describes what
is unknown about the criteria values in the risk map-
ping model, and was defined such that the individ-
ual criteria values Zjk could deviate from their nom-
inal values by an unknown fraction. Since we had no
prior knowledge about the actual degree of uncer-
tainty of the Zjk values, we adopted a simple uniform-
bound model, U(h), where each criterion value devi-
ates from its nominal value by a proportion h or less,
but the value of h is not known:

U(h) = {Zjk : Zjk ∈ [0; 1],
∣∣Zjk − Zjk

∣∣ ≤ hZjk,

for all j and k}, h ≥ 0. (3)

Note that the uncertain criteria values Zjk are not
allowed to take negative values.

The risk rank of a map location is defined so that
larger values are more critical for the decisionmaker.
Here, we assume the responsible decisionmaker will
likely take action only when serious risks are confi-
dently anticipated. In essence, this cautious decision-
making strategy reflects the attitude that large irre-
versible actions regarding the regulation and control
of new invasive pests should be initiated only when
the danger of inaction is clear and present. Note that
this strategy should be distinguished from a precau-
tionary strategy under which action is taken when
severe adverse outcomes are plausible. Given that
knowledge about new or anticipated invasive pests is
usually poor, we assume a decisionmaker would fol-
low a cautious decision-making strategy when using
the risk map as a decision support aid.

Let Rj(Z) be the risk value at map location j,
which depends on highly uncertain values of Zjk,
denoted collectively by Z. An irreversible high-cost
action will be taken at location j only if the risk
value Rj(Z) is confidently assessed to be high. Let
Z be the estimated value of the uncertain quanti-
ties Z. Thus, the estimated risk at location j is Rj(Z).
If this estimated risk is acceptably low, then no ac-
tion is indicated according to the cautious decision-
making strategy. However, if the estimated risk is
high, we ask: Are we confident that this estimate is
correct? What is the highest level of uncertainty at
which the risk value is still large enough to justify a
high-consequence action? The answer to this ques-

tion is the robustness function, which is defined as
the largest horizon of uncertainty, ĥ, at which the risk
value is still high enough to justify an irreversible ac-
tion (such as control, regulation, or surveillance). Let
Rjmin denote the lowest level of risk that, if confi-
dently assessed, indicate the need for a regulatory,
surveillance, or mitigation effort. The robustness of
the risk map at location j then can be defined as:

ĥ j (Rjmin) = max
{

h :
(

min
Z∈U(h)

Rj (Z)
)

≥ Rjmin

}
.

(4)

A large value of ĥj(Rjmin) means a risk value at
least as high as Rjmin will occur for any realization
of the uncertain quantities Z up to a large horizon
of uncertainty, ĥ. In practical terms, a large robust-
ness value means that a decisionmaker can confi-
dently assert that the risk at location j is substan-
tial, which indicates that action should be taken.
The inner minimum in Equation (4), μj(h), is the
inverse of the robustness ĥj [Rjmin],(69) or in other
words, is the value of Rjmin at which the robustness, ĥj

[Rjmin], equals h. This inner minimum was found iter-
atively via stochastic simulations. Because of our lack
of knowledge regarding ĥ, we searched the model
of uncertainty U(h) for a set of nested intervals h
(h ∈ [0; 0.7]) in order to obtain the correspond-
ing criteria values Zjk over M independent rankings,
m = 1, . . . , M:[

Zjkm

Zjkm ∈ U(h)

]
m= 1,...,M

⇒M min
m

Rj
(
Zjkm

)
(5)

Notably, the value of min Rj (Zjkm) decreases
when uncertainty, h, in the criteria values increases.
This means that the robustness, ĥj [Rj min], decreases
as Rjmin increases, reflecting a lack of confidence in
correctly identifying high-risk locations.

We used the shape of the robustness function
ĥj [Rj min] to compare the performance of the MAF
and LWA methods in the presence of uncertainties.
We calculated the robustness estimates for all geo-
graphical locations in our risk map area (i.e., the con-
tiguous United States and Canada). The geospatial
aspects of the technique are similar to the analysis de-
scribed in Yemshanov et al.(70) In this case, for each
map cell j (j = 1, . . . , J), two robustness curves (as
depicted in Equation (5)) were generated separately
for the MAF and LWA techniques, ĥj [Rj min]MAF

and ĥj [Rj min]LWA. (Both curves have the same units,
permitting straightforward comparison.) Finally, we
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computed a map of Euclidean distances, Dj, between
the MAF and LWA robustness curves. These are
computed with the inverses of the robustness curves,
μj(h). We evaluated the distance between the MAF
and LWA robustness curves in terms of the distance
between Rj min values at horizons of uncertainty, hi =
0, 0.1, 0.3, 0.5, and 0.7:

Dj =
√√√√ 5∑

i=1

[μ j (hi )Pareto − μ j (hi )MCWA]2. (6)

Essentially, the map of Dj delineates the loca-
tions where the MAF and LWA robustness curves
have similar (or apparently different) behavior.

3. RESULTS

3.1. Integrated Risk Ranks in the Nominal Scenario

The integrated risk maps generated with the
MAF and LWA methods in the nominal scenario
(Fig. 3) largely agree in terms of the relative geo-
graphic distribution of their highest and lowest risk
areas, as reflected by high Spearman rank correlation
(rs = 0.89) values between them for the entire map
area. For example, in both maps the highest risks
have been assigned to large urban centers and re-
gions under severe drought stress in the southeastern
United States. Notably for the MAF-based map
(Fig. 3a), the highest risk ranking class includes all
locations (i.e., map cells) where at least one risk
criterion is at its maximum value. As a result, given
a similar number of output risk classes, the MAF-
based aggregation always allocates a larger number
of map cells to the highest risk class than the LWA
technique (Fig. 3b). This aspect is illustrated with a
schematic comparison of the MAF-based ranks and
same-width LWA rankings (Fig. 4); note that some
points assigned to the highest multiattribute frontier
(rank 1) are assigned a lower risk rank in the LWA
ranking (i.e., rank 2). Perhaps more significantly,
the LWA aggregation simply assigns more points to
medium-risk ranks than the MAF aggregation as a
result of a compensatory effect, where high risk in
one criterion is compensated by low risk in another.
Because the LWA integrated risks are based on
linear averaging, the LWA map shows more gradual
transitions between high- and low-risk areas, and
fewer maxima (Fig. 4).

The correspondence between the MAF and
LWA risk ranks has been summarized for the en-
tire risk map area and for four broad geographic

regions (Table 1): the northern United States, the
southern United States, the western United States,
and Canada (see Fig. 5c for a map of these re-
gions). In each region, the LWA-generated risk val-
ues are distributed closer to their overall averages,
such that fewer risk values are found in the extreme
risk classes. The MAF ranking consistently assigns
0.08–0.12 higher risk values compared to the LWA.
Again, this is evidence of the compensatory effect in
the LWA method.(18)

3.2. Robustness of Integrated Risk Ranks
to Uncertainty

The robustness curves, ĥj [Rj min], for both the
MAF and LWA aggregations have also been sum-
marized (Fig. 5a) at the level of our four broad ge-
ographic regions (northern United States, southern
United States, western United States, and Canada).
The MAF-based risk ranks exhibit higher robustness
to uncertainties when the aspirations regarding the
outcomes are demanding (i.e., in cases when deci-
sionmakers, as risk map users, are particularly con-
cerned with identifying the highest risk areas, and
thus set higher Rjmin threshold values). The LWA
rankings show better robustness to uncertainty when
the required quality of the outcome is low (i.e., when
low values of Rjmin are acceptable, Fig. 5a). This dif-
ference can be explained by the discrete nature of
the MAF aggregation. Because the delineation of the
multiattribute frontiers is based in our case on a par-
tial order of points in each criteria set, small errors
in criteria values are unlikely to change the rank or-
der, and hence do not have much effect on the rela-
tive positions of the multiattribute frontiers. Alter-
natively, the LWA aggregation method uses linear
averaging, and therefore any errors in the individ-
ual risk criteria values propagate to the integrated
risk estimates and thus decrease the robustness to
uncertainty. However, when errors in the original
criteria values become large, they may considerably
alter the order of elements in a multidimensional
set and the subsequent delineation of the multiat-
tribute frontiers. As a result, when the risk rank-
ings do not have to be precise (i.e., when low Rjmin

is acceptable), the MAF loses its competitive advan-
tage over LWA. This explains the preference rever-
sal in the robustness functions for all regions except
the southern United States (Fig. 5a). In summary,
the MAF-based aggregation may be a more reli-
able choice when a decisionmaker’s aspirations are
high.
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(a) MAF based aggregation-
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Fig. 3. Aggregated risks in the nominal scenario: (a) MAF-based ranking; (b) LWA technique.
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Fig. 4. Conceptual example of MAF-based risk ranks and their
equivalents delineated by the LWA technique.

We also recalculated the robustness functions
for high-risk regions only (i.e., where the Rj val-
ues exceeded 0.67 in at least one of classifications,
Fig. 5b). Here, the MAF-based aggregation shows
considerably higher robustness to uncertainty for all
scenarios, especially in the western United States
and Canada. This again can be explained by the dis-
crete nature of the frontier-based ranking technique.
Because the delineation of frontiers starts with the
highest risk values and progresses through incremen-
tally lower risk values, any errors in delineating a
given risk rank are transferred to the delineation of
the subsequent rank. However, since the highest risk
ranks are delineated early in this process, they are
less likely to be affected by such errors. This contrasts
with the continuous gradient of risk values generated
by LWA and the resulting linear propagation of un-
certainties from the input criteria to the aggregated
risk estimates.

In both Figs. 5a and 5b, the regional robustness
curves for the MAF aggregation exhibit steeper de-
clines than their LWA counterparts. This implies that
the MAF-based aggregation is likely to be more re-
sponsive to improved knowledge (i.e., reduced un-
certainty) regarding the individual risk criteria. In
contrast, the LWA robustness curves are relatively
flat and do not change very much in response to
the level of uncertainty (or alternatively to improved
knowledge).

Table I. Correspondence Between the MAF-Based and LWA
Integrated Risk Rankings

MAF-Based Risk ClassLWA
Risk
Class 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

All Regions (United States and Canada)
0–0.2 28.0

∗
69.9

∗ ∗
1.6 0.5

0.2–0.4 12.9 75.3 11.8 0.1
0.4–0.6 38.0 60.7 1.3
0.6–0.8 86.0 14.0
0.8–1 100.0

Northern United States
0–0.2 24.0 73.8 1.7 0.5
0.2–0.4 21.5 76.2 2.3 0.05
0.4–0.6 47.1 52.7 0.2
0.6–0.8 84.4 15.6
0.8–1

∗ ∗ ∗

Southern United States
0–0.2 29.3 68.1 1.9 0.6
0.2–0.4 10.3 74.6 15.0 0.1
0.4–0.6 33.2 65.1 1.7
0.6–0.8 87.5 12.5
0.8–1 100.0

Western United States
0–0.2 57.1 41.2 1.4 0.3
0.2–0.4 6.3 83.7 9.8 0.2
0.4–0.6 33.4 62.3 4.3
0.6–0.8 89.1 10.9
0.8–1

∗ ∗ ∗

Canada
0–0.2 6.0 92.5 0.9 0.6
0.2–0.4 27.1 48.3 24.0 0.6
0.4–0.6 42.4 10.8 46.8
0.6–0.8 1.4 98.6
0.8–1

∗ ∗ ∗

Note: The rows show the percentage of map cell values in each of
six MAF-based risk classes that fall within a given LWA risk class.
∗
Shaded cells show diagonal elements of a correspondence table

(i.e., where both LWA and MAF-based rankings fall into the same
risk class).
∗ ∗

Row maximums are marked in bold.
∗ ∗ ∗

The LWA aggregation did not show risk classes above 0.8 for
these particular regions.

A map of Dj, the Euclidean distance between
the values of the two sets of robustness curves for
each location (map cell) j, highlights geographic ar-
eas where the MAF-based and LWA total robustness
curves have similar (or apparently different) behav-
ior (online Appendix 2). In general, the highest dif-
ferences were observed for major urban metropolises
in Canada and the United States, as well as a
portion of the southeastern United States (i.e.,
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Fig. 5. Robustness of risk rank to uncertainties in the criteria values. (a) Whole study area (Canada and United States); (b) high-risk areas
only with RjMAF or RjLWA > 0.67 in the nominal scenario; (c) geographic regions.

southern Mississippi, Alabama, and Georgia, as well
as northern Florida) with a recent (10-year) his-
tory of severe late spring-early summer drought.
The MAF-based aggregation also shows moderately
higher robustness values (by 0.1–0.3) for a broader
drought-affected region stretching across much of
the southeastern United States. For the rest of the
risk map extent, differences in robustness values are
less than 20%.

4. DISCUSSION

4.1. Potential Benefits for Mapping Invasive
Species Risks

Our results demonstrate that an aggregation of
multiple risks based on the MAF principle can serve
as a viable starting point in cases when prior knowl-
edge about the relative importance of the individual
risk criteria is nonexistent. The MAF aggregation is

based on a partial order of elements in each criteria
set, and is therefore more stable to moderate errors
in data than the LWA technique. Essentially, it takes
a higher degree of uncertainty to change the order
of elements and dominance relations in a set than to
change their actual values.

The presented technique helps to resolve some
critical issues in risk mapping of emerging invasive
species threats. Foremost, the methodology offers
a strategy for addressing the typical lack of knowl-
edge regarding how separate invasion risk compo-
nents should be combined into a single-dimension es-
timate. Unfortunately, absence of knowledge about
species’ ecology and likely behavior in a new envi-
ronment is extremely common for recently detected
or anticipated invaders, and therefore a capacity to
generate consistent rankings from poor-quality data
is essential for time-sensitive assessments.

Furthermore, this lack of knowledge can lead to
fairly ambiguous forecasts, where risk is mapped in
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vague terms (such as “considerable” or “moderate”).
In some respects, this cautious approach seems jus-
tified: although experts can generally perceive the
meaningful trends in a set of risk criteria, they are
rarely able to determine the precise threshold values
in these criteria where invasion “success” becomes
highly probable. Notably, the MAF-based approach
skirts this issue of thresholds, and instead exploits the
fact that each criterion in a K-dimensional set can
be ordered along a “high-low” relative risk gradient,
making it straightforward to delineate nested multi-
attribute frontiers in the K-dimensional criteria space
and thus derive a full suite of integrated risk ranks
(even though the trend in each risk criterion is only
known vaguely).

This study used a simple, static pest invasion
model to illustrate the MAF technique. Clearly, an
application of a dynamic invasion model could pro-
vide valuable insights about nonlinear relationships
between the drivers of the spread and successful es-
tablishment of an invasive organism. However, for
many anticipated invaders (i.e., pests for which popu-
lations have yet to be detected in the region of inter-
est), knowledge about these nonlinear relationships
is nonexistent. (This information is usually collected
from field observations of the organism’s behavior
in other regions where the species is known to be
established). In this situation, a set of static proxies
of the pest’s establishment potential were the only
data available and hence dictated our choice of a rel-
atively simple model type. In general, it would be ad-
visable for the analytical team to include specialists
who are skilled at working through the underlying
modeling methods (e.g., the methods for construct-
ing the risk criteria), especially to be alert to emerg-
ing knowledge that could alter the risk map configu-
rations.

4.2. Methodological Aspects and Future Work

The MAF and LWA techniques use fundamen-
tally different approaches to synthesizing informa-
tion about individual risk criteria. The multiattribute
frontier ranking essentially “peels” convex hypersur-
faces off a multicriteria point cloud, starting from the
outermost layer. Alternatively, the LWA approach
“slices” a multidimensional cloud into hyperplanes
based on a set of criteria weights wk (as illustrated
in Fig. 4). As a consequence, the two techniques typi-
cally yield different numbers of elements at the same
level of risk.
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Fig. 6. Distance to multiattribute frontier as a function of the fron-
tier’s rank.

The position of the frontiers in the MAF-based
approach can also be influenced by local variations of
the point density across the criterion space. Because
each multiattribute frontier is essentially a point-
deep K-dimensional surface, more frontiers can be
delineated in regions of the criteria space with higher
point density and vice versa. While recognizing the
importance of this issue, we believe that this as-
pect can be quite useful to explore the structure
of a multiattribute point cloud and test the signifi-
cance of individual points (i.e., geographic map units
in our pest risk mapping case). Local variations of
point density can be identified using techniques pre-
viously developed in tiered data envelopment analy-
sis (TDEA).(43) For example, one could estimate the
Euclidean distance from a given point to each delin-
eated frontier in the criteria space and represent it as
a function of the frontier’s rank (Fig. 6). Rapid de-
crease of the distance to the frontier would outline
regions with relatively low point density, while small
declines in distance relative to rank would mark
higher density regions (where the points’ score val-
ues are similar). Regions of relatively low and high
point density could then be mapped in a geograph-
ical space as an indication of where, geographically,
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the greatest gains in ranking precision may be pos-
sible. In addition, the position of the first multiat-
tribute frontier that defines the worst combinations
of risks for a pest of interest could be used as a “refer-
ence” when comparing risk rankings of different in-
vasive organisms. In this case, each point below the
frontier would be assessed in terms of its distance
from the first frontier. Alternatively, one could esti-
mate the probability of each point belonging to one
of the first n frontiers that the analyst perceives to be
critical.

The precision of the MAF ranking method may
be directly improved by adopting other techniques
from TDEA; for example, it is possible to rank the
points within a single frontier.(43) Briefly, the con-
tribution of each individual point to the shape of
its frontier is evaluated by temporarily removing the
point from the analysis and repeating the ranking.
The points that significantly distort the shape of the
frontier on which they were previously located (or
change the frontier’s rank) can be considered as
more important and vice versa. Technically, testing
the importance of N points would require undertak-
ing N + 1 independent rankings. For very large N,
such a technique would require considerable com-
puting resources, although the procedure is highly
scalable and could be easily parallelized.

The total number of integrated risk ranks that
can be generated by a MAF-based technique also
depends on the dimensionality of the criteria space
(K). Higher dimensional criteria space usually leads
to fewer ranks. This makes the method suitable only
for relatively low-dimensional cases where K < 15
(note that this number of criteria dimensions is suf-
ficient for a vast majority of ecological and pest risk
mapping applications). For higher dimensional cases,
the precision of the ranking can be improved by ap-
plying an algorithm similar to the one implemented
in the “random forest” classification technique.(71)

The technique performs multiple rankings of sub-
sets of the point cloud � by withholding randomly
a certain portion of the points from the analysis and
generating a collection of integrated MAF rankings,
each characterizing a partially overlapping subset of
the original data set �. The final ranking is then
calculated as the unweighted plurality of the subset
ranks. According to the law of large numbers, the er-
ror rates monotonically decrease to a limit and there
should be no overfitting as the number of individual
subset rankings increases.(71)

Compared to the other multicriteria aggregation
methods, finding a multiattribute frontier leads to a

finite solution via exhaustive tests of all points for
nondominance. In general terms, the method can be
seen as an alternative to other techniques that ag-
gregate multicriteria scores, with the advantage that
is does not require making prior assumptions about
the criteria weights. Yet, finding the multiattribute
frontiers in large data sets, even without the poten-
tial refinements discussed above, represents a sub-
stantial computational effort. The most basic algo-
rithm(46) requires pairwise comparison for all data
points in a multicriteria cloud, with computational
complexity of order KN2. At this point, computing
time represents the most significant impediment to
practical application of the MAF-based technique to
large data sets. Several proposed algorithms(46,72–75)

aim to reduce the computing time for large N. Im-
proving the run-time efficiency of the ranking proce-
dure and adding the aforementioned bootstrapping
and advanced ranking options will be a focus of our
future work.

Notably, the MAF-based technique can be fur-
ther adapted to work with incomplete or imper-
fect data. Pest management professionals need to
recognize that pest outbreaks could occur in areas
classified as “low-risk” due to the imperfect input
information upon which the risk maps are based.
However, the impact of variability (i.e., uncertainty)
associated with imprecise or potentially missing in-
formation about the pest can be assessed with a
multistaged approach. First, the variability can be
represented using stochastic invasion models (or sen-
sitivity analyses) to generate multiple (but plausible)
parameter values under a range of alternative model
assumptions and, subsequently, to generate distribu-
tions of criteria maps instead of a single set of base-
line criteria values (as depicted in Appendix 1). In
the next stage, individual realizations of the risk crite-
ria sets generated with the stochastic invasion model
(or sensitivity analyses) are ranked with the MAF
technique. At this point, each geographic location in
the map would be characterized by a distribution of
plausible risk rank values instead of a single baseline
estimate. Then, the distributions of risk ranks can be
compared among multiple geographic locations and
aggregated into a single-dimensional risk rank us-
ing stochastic ordering techniques (such as methods
based on stochastic dominance(76,77)) or techniques
based on the mean-variance frontier concept.(77) Im-
portantly, the application of stochastic ordering tech-
niques would not only incorporate the uncertainty
in the underlying risk rank estimates, but would
also provide a way to incorporate decision-making
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preferences with respect to this uncertainty (so the
final risk ranks could accommodate specific decision-
making behavior, such as risk aversion(76,77)).

5. CONCLUSIONS

Key policy and regulatory decisions regarding
new invasive species often rely on uncertain founda-
tions and scarce knowledge. Public concern and calls
to proceed with response activities frequently come
before much scientific information about a new in-
vasive organism can be gathered, thus making a re-
liance on expert opinion, in the face of ignorance, an
inevitable part of the policy-making process. Often,
there is a general understanding of how an invasive
organism might enter the region of interest, spread,
and cause damage, and it is possible to find some
proxy data to evaluate and map these invasion com-
ponents in a geographic domain. However, given a
dearth of prior knowledge about the invader’s behav-
ior in its new environment, it is extremely difficult to
appropriately aggregate these individual components
in a single risk map. Assessing the robustness to un-
certainty is therefore an essential element in the anal-
ysis of risk. Linear weighted averaging techniques
have been widely used to build aggregated pest risk
maps, but these techniques depend upon (typically
naı̈ve) judgment about the relative importance of
the individual risk components, and are further in-
fluenced by decisionmakers’ perceptions regarding
their severity. For this particular situation, our ar-
ticle has proposed a simpler data-driven technique
for aggregating multiple risk components into a sin-
gle risk map. The technique analyzes a risk map in
the dimensions of its individual risk criteria and finds
subsequent multiattribute efficient frontiers to delin-
eate a combination of the most severe risks. Com-
pared to a linear weighted averaging approach, the
multiattribute frontier aggregation seems to be a bet-
ter starting point in cases when the prior knowledge
about an invasive pest is poor or lacking. In particu-
lar, the multiattribute frontier technique seems more
robust to uncertainty.
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Appendix 1. Maps of the individual risk criteria: (A)
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