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ABSTRACT / Soil organic carbon (SOC) represents the largest
constituent of the global C pool and is used by researchers in
C cycling, global climate change, and soil quality studies. Spa-
tial, pedon, and soil interpretation record databases are widely
used to estimate regional SOC. This study compared pub-
lished SOC estimates with estimates of mass SOC to 2 m in
Maine and Minnesota using STATSGO data tables edited and
filled by automated software scripts. Valid STATSGO soil

property data were used to produce replacement values for
invalid or missing data after grouping by soil order, MLRA,
layer number, and texture. Area-weighted mass SOC was cal-
culated using log-transformed data. Between 30% and 54%
of the large rock fragment data were invalid, and between
18% and 48% of the missing OM values were replaced. The
log-transformed area-weighted mass SOC to 2 m was 7.88
kg/m2 (SD � 9.24 kg C/m2 CV � 117.2%) for Maine and
17.38 kg/m2 (SD � 15.30 kg C/m2 CV � 88.1%) for Minne-
sota. These values were lower than earlier estimates because
of the log-transformation and because our error checking in-
creased the volume of rock fragments. The FIA database was
merged with STATSGO to produce mass SOC by forest-type
group. The elm–ash–cottonwood (7.22 kg C/m2) and the
spruce–fir (17.73 kg C/m2) forest-type groups had the highest
SOC (to 1 m depth) in Maine and Minnesota, respectively. The
methods and scripts used in this study can be easily adjusted,
and as they are improved, they in turn can improve the quality
of data in STATSGO tables.

Soil organic C inventory and analysis are required
for soil quality assessments (Sikora and Stott 1996) and
C cycling predictions (Ellert and others 2002) and are
used for state and regional planning by politicians,
regulators, and agency employees. Models of global
climate change need accurate and complete soil or-
ganic C (SOC) inventories because the SOC pool rep-
resents the largest component of the global C pool
(Jobbagy and Jackson 2000) and acts as a regulator of
atmospheric CO2 levels (Amundson 2001). Previous
studies have attempted to extrapolate sources of SOC
data available in pedon databases over large areas using
small-scale digital soil maps (Franzmeier and others
1985, Huntington and others 1988, Davidson and Le-
febvre 1993, Kern 1994, Bliss and others 1995, Homann
and others 1998, Johnson and Kern 2003, Galbraith
and others 2003). These researchers and modelers en-

countered consistent problems because of the incom-
plete nature of the soil databases.

Pedon databases seldom contain a complete inven-
tory of the soil series used as map unit components, or
fail to include organic C (OC) or organic matter (OM),
bulk density (BD), and rock fragment content (RFC)
values for all horizons (Davidson and Lefebvre 1993,
Johnson and Kern 2003). United States Department of
Agriculture-Natural Resources Conservation Service
(USDA-NRCS) Soil Interpretation Record (SIR) data-
bases that accompany their soil surveys include all map
unit components but are often missing OM from min-
eral horizons below the surface 18 cm (Bliss and others
1995), a critical limitation to producing accurate SOC
estimates (Lacelle and others 2001). For example,
Johnson and Kern (2003, p. 55) studied the USDA-
NRCS pedon database and reported that 56% of the
mass SOC (excluding surface litter layers) occurred
between 0.3 and 1.5 m for mineral soil orders other
than Gelisols and Oxisols.

The State Soil Geographic database (STATSGO) is a
widely used small-scale (1:250,000) SIR database that
provides a digital map and 15 different tables for each

KEY WORDS: STATSGO; FIA; Soil organic carbon; Soil survey; Soil car-
bon maps; Forest type group

Published online December 4, 2003.

DOI: 10.1007/s00267-003-9119-0

Environmental Management Vol. 33, Supplement 1, pp. S74–S86 © 2004 Springer-Verlag New York, LLC



state in the United States (http://www.ftw.nrcs.usd-
a.gov/stat_data.html ). A complete description is given
in Homann and others (1998, p. 791) and in the
STATSGO user’s guide (National Soil Survey Center
1994). STATSGO was first issued in 1991, revised in
1993, and last revised in December 1994. STATSGO
data is used for soil characterization, global climate
change modeling (Bliss and others 1995), soil organic
carbon storage estimation (Homann and others 1998;
Davidson and Lefebvre 1993) and regional mapping
projects (Lacalle and others 2001). Modelers must cal-
culate representative values for soil properties in
STATSGO tables, unlike the databases currently used
by USDA-NRCS that contain representative values as-
signed by soil scientists familiar with the soil resources.

STATSGO tables contain empty (null) cells and zero
values for various reasons. The cells may have been left
unfilled because the job was never completed due to
staffing cutbacks or because a value was not applicable,
such as the OM content for a layer of bedrock. How-
ever, blank cells may have been converted to null or
zero and null may be converted to zero inadvertently
during institutional database conversions from the orig-
inal USDA-NRCS State Soil Survey Database. Invalid
null and zero values are problematic because they cause
calculation errors that result in loss of data from that
layer and lower values for properties where mass is
calculated on a pedon basis. Recently, a few error-
checking routines have been developed to check the
data in the National Soil Information System database
(NASIS) Ver. 5.x (http://nasis.nrcs.usda.gov/ ) that is
used in the detailed soil survey databases (SSURGO).
However, the NASIS database is different than that
used for STATSGO, and the update of STATSGO data
to the NASIS 5.x format is incomplete.

Zero values in STATSGO tables that are invalid can
be detected through expert knowledge and should be
replaced by estimated or calculated values. For exam-
ple, Davidson and Lefebvre (1993) used results and
data from technical bulletins to replace 0.0 OC concen-
tration values with 0.2 values for lower layers in their
STATSGO tables, based on the results of published
research. Textures that have rock fragment modifiers
but zero values in all rock fragment content fields are
an example of data inconsistency. Conversely, soil tex-
tures without a rock fragment modifier could possibly
contain zero rock fragments. Zero would never be a
reasonable value for minimum or maximum bulk den-
sity in a soil horizon and therefore should be treated as
invalid data. While error-checking models have been
devised by USDA-NRCS for detailed soil survey data-
base products, none have been used on STATSGO.
This study will use automated scripts to determine in-

valid null and zero values in STATSGO and fill them
with averages from valid existing STATSGO data with-
out incorporating ancillary data from other sources.

A variety of methods and data sources have been
used to fill null cells and replace inaccurate zero values
in STATSGO databases. Davidson and Lefebvre (1993)
and Galbraith and others (2003) used expert judgment
to fill missing data based on ancillary data and data
from similar soil series. Davidson and Lefebvre (1993)
also assigned minimum values for OM in subsoil layers
to replace zero values based on studies that had shown
that 0.1 to 0.3% OM actually occurred. Kern (1994)
assigned OM concentration where it was invalid by
taking half the OM value from the horizon above and
adjusted bulk density data based on regressions from
USDA lab data. Homann and others (1995) replaced
missing data with values from adjoining, genetically
similar horizons in the same pedon, and by calculating
replacement values from accessory sampling data.
Lacelle and others (2001, p. 489) filled missing bulk
density data with replacement values from adjacent
layers with similar clay and OM and used a neural-net
relationship to calculate bulk densities in six categories
of soils. Homann and others (1998) used ratios of
volumetric SOC in the upper 20 cm to determine the
relationship between soil map unit components, then
applied that ratio to modify existing subsoil layer SOC
for use in the subsoil layers of similar soils that had
incomplete records. These methods prevented unrea-
sonably low pedon SOC values while extrapolating in-
complete SOC data to calculate regional SOC stocks.

Soil properties are influenced or controlled by the
five soil-forming factors (Jenny 1941). Major land re-
source areas (MRLA) (Soil Conservation Service 1981)
and soil classification have been used as the basis of
national soil carbon maps (Kern 1994, Homann and
others 1998) because they isolate major differences in
soil forming factors and incorporate many of the soil,
climate, vegetation, and geographic variations that in-
fluence OC sequestration in soils.

Few researchers have build regression models in
order to describe the relationship between SOC con-
tent and site characteristics (Burke and others 1989,
Homann and others 1995), including the influence of
soil texture (Borchers and Perry 1992). Burke and oth-
ers (1989) used 300 cultivated and 500 rangeland soil
pedons to analyze the relationships between mean an-
nual temperature, annual precipitation, soil texture
(silt and clay content), and SOC content in the surface
20 cm for the Central Plains of the United States.
Although neither silt nor clay by itself were found to be
significant predictors for SOC, Burke and others
(1989) found that the combined effects of each with
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annual precipitation were significant. Results show that
predicted SOC content depends on the combination of
clay and silt, so that clay and loam soils are similar, “but
sandy soils are predicted to have considerably lower
organic C than the fine or medium textured soils”
(Burke and others 1989).

Similarly, in a regression analysis study of 134 forest
pedon data in western Oregon, Homann and others
(1995) reported significant effects of mass clay content
and the cross-products of slope X silt and actual evapo-
transpiration X clay on SOC content for the surface 0–
20 cm. Borchers and Perry (1992) analyzed the carbon
and nitrogen content in fractionated soils from poorly
vegetated clear-cuts and adjacent forested areas in
southwest Oregon and reported that C and N concen-
trations increase with decreasing soil particle size. In
addition, relative to sand fraction, the fine-clay frac-
tions were reported to be 10 times richer in C and N.
Increased clay content slows organic matter decompo-
sition by absorption and aggregation and results in
effective increases of soil organic matter (Burke and
others 1989).

Unlike pedon databases, STATSGO contains
records for each component of each map unit and
reports a range of both low and high estimated values
for each property. Most investigators find it satisfactory
to assume a symmetrical (normal) distribution of
STATSGO data and use the simple average between the
low and high values as a representative value (Davidson
and Lefebvre 1993, Kern 1994, Bliss and others 1995).
However, many soil property distributions are skewed
rather than symmetrical (Homann and others 1998,
Grigal and others 1991, Brejda and others 2000), as
shown in Figure 1a. If STATSGO low and high values
are not normally distributed, then data transformation
must be used to compute a representative value. Hom-
ann and others (1998) used coefficient-transformed
data assuming skewed distribution and untransformed
data assuming normal distribution. However, they
chose the simple average of untransformed data be-
cause their coefficient-transformed representative C
values (Homann and others 1998, p. 792) reduced
regional SOC values from 13.8 to 12.9 kg C/m2 in the
upper 1 m. The higher SOC value was in closer agree-
ment to the values calculated from arithmetic means of
pedon data sets alone and area-weighted for four map
units, but slightly higher than estimates from coarser-
scale FAO soils map and ecosystem type maps (Olson
and others 1985). The authors stated that the accuracy
and uncertainty of the regional mass SOC values can-
not be objectively assessed (Homann and others 1998),
leaving an uncertainty as to whether or not the trans-
formation improved prediction accuracy. Recently, Bre-

jda and others (2000) proved that loge (lognormal)
transformed estimates for most soil properties approx-
imated a normal distribution more closely than the
distribution of the nontransformed data (Figure 1b). In
addition, due to the fact that most soil properties are
assigned only positive values and just a few of them
appear as outliers, the loge transformation reduces vari-
ability two- to threefold for most soil attributes (Brejda
and others 2000). We hypothesize that using the mean
of a lognormal distribution of values should provide a
more representative estimate of soil properties than the
simple mean of minimum and maximum values, by
reducing the variation between extreme values.

Mass SOC data from soils databases are more useful
for C sequestration and climate change modeling when
combined with biomass or net primary productivity
inventories. A preliminary step to determining SOC
resources by forest type is to use geographic informa-
tion systems (GIS) software to integrate national spatial
databases such as STATSGO and the US Forest Service
Forest Inventory and Analysis (FIA) database (http://
fia.fs.fed.us/ ). Johnson and Kern (2003) used National
Soil Characterization Database (NSCD) lab data com-

Figure 1. Frequency distribution of total organic C concen-
trations in MLRA 105, North Mississippi Valley Loess Hills: (a)
nontransformed data and (b) log-transformed data (Brejda
and others 2000). Vertical lines show means.
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bined with rock fragment content and soil depth prop-
erties from an unfilled STATSGO data set to calculate
the mass SOC to 1.5 m from under the forest-type
groups classified on Advanced Very High Resolution
Radiometer (AVHRR) satellite imagery from across the
contiguous United States, but did not report results by
individual state.

The objectives of this study are to: (1) identify in-
valid zero values in STATSGO databases for Maine and
Minnesota and then replace nulls and invalid zeros
using lookup tables and an automated script for Mi-
crosoft Access 2002 (Microsoft Corporation, Redmond,
Washington, USA), (2) calculate mass SOC using aver-
ages from untransformed and lognormal-transformed
database values (called normal and lognormal distribu-
tion approaches), (3) present the magnitude of varia-
tion in SOC estimates caused by the transformation
procedures, and (4) summarize mass SOC by Forest
Inventory and Analysis (FIA) forest-type group.

Methods and Materials

Nineteen selected variables (fields) were integrated
into one new table using map unit identifier (MUID),
map unit component (SEQNUM), layer number (LAY-
ERNUM), and classification code (CLASCODE) fields to
link data from separate tables. The soil properties used
to calculate mass SOC are listed in Table 1. The tables
from Maine and Minnesota were sorted and filtered
separately to estimate the frequency and distribution of
null and zero values. The data was kept separate by state
in order to help each state evaluate the quality and
target the editing needs of its STATSGO data set.

The texture for any layer was represented by codes
listed in the separate TEXTURE 1, TEXTURE 2, and
TEXTURE 3 fields. The texture entries were single
codes unless the layer contained �15% volume of rock

fragments. In that case, there was an adjective (rock
fragment modifier code) that preceded the texture
code and was separated by a dash, such as STV-FSL (STV
� very stony; FSL � fine sandy loam). These separate
codes are referred to as TEXTUREx_LEFT (rock frag-
ment modifier code) and TEXTUREx_RIGHT (the fine
earth portion).

The approach of this study was to create automated
scripts to create texture-based lookup tables in order to
identify valid STATSGO values for soil properties used
to calculate mass SOC, and to identify invalid entries of
zero. The valid entries of these input properties (Table
1) were grouped by layer number, MLRA, and soil
order (linked by the CLASCODE variable) from Soil
Taxonomy (Soil Survey Staff 1999) and used to create
lookup tables. The lookup tables were used to fix (re-
place) nulls and invalid zeros in the same groups that
were used to identify the invalid entries and create the
lookup table averages.

Assumptions for Modifying Organic Matter Data

Layer number, parent material, soil order, and tex-
ture of the fine earth (� 2 mm) were assumed to affect
or reflect OM content, but RFC was not. Only TEXTUR-
Ex_RIGHT codes were used for OM computations and
record matching. For example, textures with codes
STV-FSL and FSL were grouped in the same set of
records. The following assumptions were considered
applicable for determining validity of OMH and OML
records: (a) OMH and OML should be zero for the
following textures: WB (weathered bedrock), UWB (un-
weathered bedrock), CEM (cemented), and IND (indu-
rated); (b) zero value for OML is acceptable in mineral
or inorganic but not for organic or organic-modified
textures; (c) an average value of zero is acceptable for
OMH for textures that are ICE (ice or frozen soil) layers
or mostly rock fragments such as FRAG (fragmental

Table 1. STATSGO soil property variables used in calculation of mass soil OC

Variable code Variable name

OMH organic matter high (maximum)
OML organic matter low (minimum)
BDH bulk density high (maximum)
BDL bulk density low (minimum)
INCH3H percent by weight of rock fragments with size � 25 cm high (maximum)
INCH3L percent by weight of rock fragments with size � 25 cm low (minimum)
INCH10H percent by weight of rock fragments with size � 7.5 cm high (maximum)
INCH10L percent by weight of rock fragments with size � 7.5 cm low (minimum)
NO10H percent by weight of rock fragments with size � 7.5 cm and which pass through a No. 10 sieve

(2 mm screen) high (maximum)
NO10L percent by weight of rock fragments with size � 7.5 cm and which pass through a No. 10 sieve

(2 mm screen) low (minimum)
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material), G (gravel), and CIND (cinders); and (d)
when TEXTURE 1_RIGHT codes were VAR (variable),
SR (stratified), and UNK (unknown), the texture code
in TEXTURE 2_RIGHT and TEXTURE 3_RIGHT were
used as a proxy.

STATSGO data from different states was kept in
separate data sets. The following assumptions were con-
sidered applicable for grouping valid OMH and OML
records in the Maine and Minnesota data sets: (a) data
were separated by MLRA; (b) within each MLRA group,
data were separated into four specific soil order groups:
Histosols, Spodosols, Andisols, and all others; and (c)
data was kept separate by layer in each MLRA and soil
order group before averages were calculated at four
levels of specificity, ranging from very specific to very
general. Invalid records in the STATSGO database
were marked for replacement. The phase I lookup
tables were created with averages for every possible
TEXTUREx_RIGHT value. Replacement of invalid data
in TEXTURE 1_RIGHT was based on an exact match
from the phase I lookup table. In case TEXTURE
1_RIGHT contained UKN, SR, or VAR, or where there
were fewer than three valid values of existing data for
the texture in TEXTURE 1_RIGHT, the average of the
averages for the textures in TEXTURE 2_RIGHT and
TEXTURE 3_RIGHT was used as a replacement. Re-
placement takes place by joining the original
STATSGO Layer table with the phase I lookup table by
their common fields (ORDER, MLRA, LAYERNUM, and
TEXTURE 1) to transfer replacement values to all
records with OMH;OML fields that are nulls or zeros. If
there were too few valid values to compute a replace-
ment average, no replacement was made and the exist-
ing values were grouped into more general categories
in phases II–IV. There were 71 unique texture values
that were grouped into 19, 9, and 4 groups in phases
II–IV. For example, the peat texture in phase I was
placed into the fibric group in phase II, the low decom-
position OM group in phase III, and the organic group
in phase IV. To prevent indecision, the only four
groups in the phase IV lookup table were organic,
organic modified, mineral, and no carbon. The no-
carbon group contained members where the TEXTUR-
Ex_RIGHT value was CEMENTED, CINDERS, FRAGMEN-
TAL_MATERIAL, GRAVEL, ICE_OR_FROZEN_SOIL,
INDURATED, UNWEATHERED BEDROCK, or WEATH-
ERED BEDROCK. If there were too few valid values to
compute a replacement average after phase IV, the zero
value was left and the null values were converted to zero
and the property table was considered fixed. Alto-
gether, 55 lookup tables were created, 11 for each of
the following five properties: OM, BD, NO10, INCH3,
and INCH10.

Assumptions for Modifying Bulk Density Data

Layer number, parent material, soil order, texture of
the fine earth, rock fragment size, and RFC were as-
sumed to affect the BD of the soil layer. Stones (ST,
STV, and STX texture codes), flags (FL, FLV, and FLX),
and boulders (BY, BYV, and BYX) were so large that
they were assumed not to affect the BD of the fine-
earth, but gravel (G, GRC, GRF, GRV, GRX), chert (CR,
CRC, CRV, CRX), cinders (CIND), pumice (PUM,
APUM, HPUM, MPUM), shale (SH, SHV, SHX), and
channers (CN, CNV, CNX) were. Both TEXTUREx_LEFT
and TEXTUREx_RIGHT codes were used for BD com-
putations and record matching. The following assump-
tions were considered applicable for determining valid-
ity of BDH and BDL records: (a) BDL and BDH of zero
was acceptable for textures WB, UWB, IND, and CEM.
The assumptions for grouping valid BDH and BDL
records and for procedures for replacing invalid BDH
and BDL records were the same described for OMH and
OML above, with the following exceptions: (a) after
fixing procedures, a value of 0.00 was used instead of
null to prevent calculation errors, although 0.00 was
not a reasonable value for bulk density.

Assumptions for Modifying Rock Fragment Data

Layer number, parent material, and texture were
assumed to affect the RFC of the soil layer, but soil
order was not. It was assumed that soil layers with stones
would also contain smaller size rock fragments. The
same concept was used when cobbles were present.
However, it was not assumed that layers with gravel
necessarily contained cobbles or that layers with cob-
bles always contained stones. Both TEXTUREx_LEFT
and TEXTUREx_RIGHT codes were used for RFC com-
putations and record matching. The following assump-
tions were considered applicable for determining valid-
ity of RFC records: (a) zero values were acceptable for
INCH3L and INCH3H (cobbles) and INCH10L and
INCH10H (stones) if no rock fragment modifier was
present; (b) zero values were not acceptable for
INCH3H (cobbles) and INCH10H (stones) if any TEX-
TUREx_LEFT code indicated RFC volume to be �15%;
and (c) zero values were not acceptable for NO10L or
NO10H because those variables represented the per-
cent weight of rock fragments with size less than 7.5 cm
plus those that passed through a 2-mm screen, which
means that a zero value would not be possible unless
there was no fine earth in the layer at all, as in solid
bedrock.

The following assumptions were considered applica-
ble for grouping valid RFC records: (a) data were sep-
arated by MLRA, and (b) data were kept separate by
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layer in each MLRA group before averages were calcu-
lated by grouping in phases I–IV. The procedure for
replacing invalid RFC records were similar to those
described for OMH and OML above, except that re-
placement was based on the presence of a code in any
of TEXTURE 1_LEFT, TEXTURE 2_LEFT, or TEXTURE
3_LEFT rather than based on TEXTURE 1_LEFT, alone.
Replacement was based on the first TEXTUREx_LEFT
code found in the layer, checked in order from TEX-
TURE 1 to 3.

Formulae for Calculating SOC from STATSGO
Tables

The amount (kilograms of carbon per square meter)
of layer organic carbon (LOC) was calculated for each
unique layer (LAYERNUM variable) in the Layer table.
Layers composed of bedrock or indurated materials
were assigned 0.00 kg C/m2. Layer organic carbon was
calculated as 0.00 kg C/m2 only when OML and OMH
were 0.00 (Bliss and others 1995, p. 288). The LOC
normal method assumed a normal distribution of non-
transformed property values and used formulas de-
scribed by Davidson and Lefebvre (1993) and Bliss and
others (1995). The LOC lognormal method assumed a
normal distribution of logarithmically transformed
property values. LOC-lognormal was calculated the
same as LOC-normal but with the following exceptions:
(1) the antilog of [(natural logarithm of OMH � nat-
ural logarithm of OML)* 0.5] was used in place of the
simple average of the OMH and OML values, and (2)
the antilog of [(natural logarithm of BDH � natural
logarithm of BDL) * 0.5] was used in place of the simple
average of the BDH and BDL values. RFC data were not
transformed because of the large number of valid zero
and low values for both low and high variables. Mass
SOC was calculated using formulas described by Bliss
and others (1995) for the upper 2 m of each map unit
component (SEQNUM) of each map unit (MUID) and
stored as map unit component organic carbon. Map
unit components (SEQNUM) of water, rock outcrop,
and other miscellaneous land types were assigned 0.00
kg C/m2. Mass SOC was summed by map unit (MUI-
D_OC) and area-weighted SOC was calculated for both
normal and lognormal data sets using formulas in Gal-
braith and others (2003). The area-weighted standard
deviation was calculated as the standard deviation of
mass SOC values of all components within a mapping
unit rather than the simple standard deviation, which
was computed as the variation between SOC values of
all mapping units in each state without considering the
inherent variation passed from the components.

Combining FIA and STATSGO Data

The FIA database includes three data tables, called
COUNTY, PLOT, and TREE, that are hierarchically related
to one other. The most general table is the COUNTY table
that contains plot-related county and regional unit infor-
mation. The PLOT table provides extensive information
on land ownership, current and previous forest type and
forest-type group, number of acres that each plot repre-
sents on the ground, and a unique plot number. The
TREE table is the most detailed table and provides tree
growth data (Hansen and others 1992). The SOC stores
calculated in this study for Maine and Minnesota were
reported by FIA forest-type group because much of the
area is currently or formerly forested.

The STATSGO spatial layers were reprojected from
their Albers Conical Equal Area projection based on
the North American Datum of 1927 (NAD27) into
unprojected layers with decimal degree units of the
NAD27 datum. The latter is currently used by FIA field
crews in most US regions to locate inventory plots on
the ground with global positioning system (GPS) de-
vices. The SOC data from STATSGO map units were
spatially related to FIA forest-type group using the Arc-
GIS 8.x Geoprocessing Tools (Environmental Systems
Research Institute, Inc., Redlands, California, USA).
Forest-type group (ForTypGr) and area expansion fac-
tors (Expacr) were the variables extracted from the FIA
Plot table. Soil organic carbon estimates were assigned
to each forest inventory plot by performing spatial over-
lay analysis of normal and lognormal SOC maps with
the FIA plot layer. Then, similar to the approach of Xu
and Prisley (2000), SOC values by forest-type group
were computed using the following equation:

For TypGr SOC � � �
F � 1

j

�MUID_OC*Expacr��

� � �
F � 1

j

�Expacr�� � 1

where ForTypGr SOC is the soil organic carbon by forest-
type group (kg m�2), MUID_OC is the mass SOC kg
m�2, Expacr is the expansion factor to relate the area
represented by each FIA plot, and F is the number of
FIA plot records with same forest-type group (F �
1,2,3,…, j).

Results and Discussion

STATSGO Layer Table Optimization Results

All null values were replaced by an average or a value
of zero. In the Maine STATSGO database, 25% and
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54% of the records contained zero values for OMH and
OML before fixing, but only 7% contained zeros after
fixing (Table 2). Most of the invalid values were filled
during phase I, but some changes were made in all four
phases. Bulk density values were almost all valid, as only
7% of the values were zero and � 1% were replaced
with nonzero averages. The soils in Maine were domi-
nantly glacial till over hard bedrock, but there were
many stony- and cobbly-modified textures that had zero
values in INCH3H and INCH10H fields. The zero values
were reduced to 30% and 7% for INCH10L and
INCH10H and reduced to 23% and 2% for INCH3L and
INCH3H after fixing. The 13% nulls in the NO10 vari-
ables were replaced with nonzero averages, since it
seemed illogical that any soil horizon would contain
zero material that passes through a No. 10 (2 mm)
sieve. The results for the Minnesota STATSGO data-
base were similar to Maine for all except the rock
fragment variables. The soils in Minnesota had fewer
rock fragments (except in northern parts of the state)
than the soils in Maine. The zero values were reduced
to 78 and 11% for INCH10L and INCH10H and re-
duced to 37 and 6% for INCH3L and INCH3H after
fixing (Table 2).

Since a soil may occur up to 21 times in a single map
unit and may occur in multiple map units, the averages
computed for each lookup table may be heavily influ-
enced by repetitive values from a small number of soil
series that occur with high frequency. This would
weaken the advantage of using the procedures in this
study but could also be easily remedied by filling the
database for those frequently occurring soils. These
results can be used by the states involved to target
improvements in their STATSGO data sets.

The soil order variable conveyed soil morphology
inferences that grouped soils with unique properties
and materials, such as Histosols, Spodosols, and Andis-
ols. These soil orders were the ones most likely to have
significant accumulations of OC below the surface layer
and are the three orders with the highest SOC (Kern
1994, Johnson and Kern 2003). However, Histosols and
Andisols are uncommon in many states, which may
create difficulty in acquiring large enough data sets to
produce meaningful average values. Spodosols typically
have uniform (often sandy) textures throughout but
have a dynamic change in OM content with depth
(Hoosbeek and Bryant 1995). Deriving and replacing
property averages by layer matching within a texture

Table 2. Inventory of STATSGO Layer tables before and after fixing procedures

Variable

Count % of all records

Nullsa
Zeros
before fixing

Zeros
after fixing Nulls

Zeros
before fixing

Zeros
after fixing

Records with
�1 variable fixed

Maine, 3649 records
INCH10 L 797 2280 1101 22 62 30 54
INCH10 H 797 1045 240 22 29 7 44
INCH3 L 262 2389 824 7 65 23 50
INCH3 H 262 902 65 7 25 2 30
NO10 L 468 1 0 13 � 1 – 13
NO10 H 468 0 0 13 – – 13
BD L 0 252 246b – 7 7 � 1
BD H 0 252 246b – 7 7 � 1
OM L 0 1975 243 – 54 7 47
OM H 0 906 267 – 25 7 18

Minnesota, 12318 records
INCH10 L 2651 9665 9663 22 78 78 22
INCH10 H 2651 8515 1372 22 69 11 80
INCH3 L 236 11394 4598 2 92 37 57
INCH3 H 236 6754 729 2 55 6 51
NO10 L 895 0 0 7 – – 7
NO10 H 895 0 0 7 – – 7
BD L 0 196 192b – 2 2 � 1
BD H 0 197 192b – 2 2 � 1
OM L 0 6102 193 – 50 2 48
OM H 0 3383 252 – 27 2 25

aAll null values were considered invalid and changed to zero or larger number.
b0.00 values were allowed to prevent computation errors.
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class may be in error if there is inconsistency in the
layer number of the E horizon and the spodic horizon.
In that case, a layer with very high OM (spodic horizon)
may be used to calculate an average for a layer with
lower OM (E horizon). Those problems may be reme-
died by preinspection of the Spodosol data and filling
of the subsurface layer OM, BD, and RFC values for
series with unusual layer numbering or by using other
variables such as pH, BD, or CEC to match spodic layers
in different series before creating lookup table aver-
ages. If population sizes are large enough, Spodosol
data may be grouped by drainage class and regressions
may be developed for depth to the spodic horizon as
related to the depth of the water table. A similar prob-
lem may occur in suborders with buried A horizons
(Fluvents) and high subsoil OM (Humults), although
those soils are not dominant in any region. The Molli-
sol (uncommon in Maine and most of Minnesota) soil
order is the forth highest in mass SOC and is known to
contain high amounts of OC in the surface layer and
that value is likely to be valid in STATSGO. However,
some Mollisols (especially the Albolls and Aquolls) may
also contain accumulations of SOC in layers below layer
1 and therefore could also be separated into a unique
soil order group in future uses of this procedure. The
rules for the grouping of Mollisols would not apply in
all regions, but could easily be incorporated into the
procedure for land resource regions (LRRs) that have
significant extent of Mollisols, such as in the Midwest-
ern United States.

Davidson and Lefebvre (1993, pp. 116–117) showed
that considerably more information was provided by
grouping by suborder rather than order, but the num-
ber of soils in many of their suborder groups was very
low. Kern (1994) reported that grouping pedon data by
the great group level of soil taxonomy provided better
estimates of SOC than grouping by soil order. He was
able to generate meaningful averages by using thou-
sands of pedons sampled from across the nation. That
level of detail would not have been possible in this study

because the low number of map unit components rep-
resenting different great groups would not have pro-
vided enough data to generate meaningful averages in
many cases.

Davidson and Lefebvre (1993) reported a positive
relationship at � � 0.01 between the area-weighted
drainage class and the area-weighted SOC content in
the soils of Maine (R2 � 0.54). Their map units con-
tained organic and mineral soils together, so it is un-
clear if the relationship would be significant for min-
eral soil series only. The rules for the extra level of
grouping would not apply in all regions, but could
easily be incorporated into the procedure for states that
have significant extent of poorly and very poorly
drained soils.

This study has revealed several possible ways to avoid
small numbers of valid OM data in future studies. The
first solution is to use the USDA-NRCS pedon database
used by Kern (1994) and Johnson and Kern (2003) to
fill in missing OM values for the map unit components
with dominant composition in each MLRA before fill-
ing the rest of the database. The matching could be
accomplished by series or higher taxa if there were no
data for the dominant series. A second solution to
increase the size of the data set is to combine data from
all adjacent states that are contained in the same
MLRA, rather than keeping the data separate by state.
A third solution to increase the size of the data set is to
aggregate OM data from adjacent MLRAs within the
larger LRRs (Soil Conservation Service, 1981), since the
soils would still share many soil forming factors and
physiographic similarities.

Mass SOC Estimates

Table 3 shows the area-weighted mass SOC for
Maine and Minnesota calculated by the normal and
lognormal methods. Figure 2 shows the distribution of
mass SOC by STATSGO map unit across each state. The
area-weighted mass SOC was higher in Minnesota than
in Maine because Minnesota contains more Mollisols

Table 3. Descriptive statistics of normal and lognormal area-weighted mass SOC to 1 and 2 m

Land area km2a

Normal (kg C/m2) Lognormal (kg C/m2)

Mean (SD) N CV (%) Mean (SD) N CV (%)

to 1 m to 1 m
Maine 81,457 9.34 (6.65) 69 71.2 6.37 (5.49) 69 86.2
Minnesota 211,902 16.46 (12.45) 321 75.6 13.71 (10.68) 321 77.9

to 2 m to 2 m
Maine 81,457 11.56 (11.46) 69 99.1 7.88 (9.24) 69 117.2
Minnesota 211,902 21.29 (18.61) 321 87.4 17.38 (15.30) 321 88.1

aArea determined using Albers equal area projection.
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and has deeper soils with fewer rock fragments than in
Maine. Both states contain high amounts of Spodosols
and Histosols. In Maine, the mass SOC calculated using
the normal distribution approach was about 1.5 times
higher than the lognormal distribution approach. The
same relationship occurred in Minnesota, although the
normal mass SOC values were only about 1.2 times
higher than the lognormal mass SOC values. Homann
and others (1988) reported a similar relationship but a
smaller difference between the two methods. There was
greater reduction in mass SOC value due to log-trans-
formation than reduction in variability (SD). There was
a 1.23- to 1.27-fold times increase in mass SOC between
1 and 2 m in Maine and Minnesota, which is similar to
the 1.13-fold times increase between SOC estimates to 1
and 1.5 m reported by Johnson and Kern (2003, p. 55)
for mineral soils. In this study, 19% and 21% of the
total mass SOC to 2 m was found between the 1- and
2-m depths. The standard deviation (SD) and coeffi-
cient of variation (CV) were higher for 2 m than for 1 m
SOC, because differences in mass SOC between shallow
and deep soils become larger as the deeper layers are
analyzed. The SD was higher in Minnesota than in
Maine, possibly because of the wider range in climatic

and physiographic factors (Soil Conservation Service
1981) as shown in Figure 2.

The lognormal results were compared to other pub-
lished area-weighted mass SOC estimates in Table 4.
Results of other studies using the normal method of
SOC calculation were divided by the 1.5 (Maine) and
1.2 (Minnesota) adjustment factors derived from Table
3 to allow comparison to our lognormal SOC values.
Franzmeier and others (1985), using a pedon database,
reported mass SOC to 1 m ranging from 7.1 to 75 kg
C/m2 within Minnesota, but did not report an area-
weighted average by state. However, a careful visual
estimate of the area percentage of each soil association
in Minnesota (Franzmeier and others 1985, p. 703)
times its average SOC resulted in a weighted average
estimate of 15.5 kg C/m2 to 1 m. The lognormal-
adjusted value of 12.9 is very similar to our value of 13.7
kg C/m2. Bliss and others (1995) used STATSGO data
and reported a value of 8.4 kg C/m2 to a variable depth
up to 1.65 m for Maine but that was based on only 40%
of the land area that had OM and BD data but appar-
ently uncorrected RFC values. Their lognormal-ad-
justed mass SOC in Maine was lower than ours because
they did not fill in missing data in or below layers that

Figure 2. Total SOC maps based on STATSGO map units for the states of Maine and Minnesota computed by the lognormal
averaging methods. Open water is included with the � 5 kg/m2 delineations, and makes up 3.1% of the total area of Maine and
3.0% of Minnesota.
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had zero values for both OM and BD. Their lognormal-
adjusted value for Minnesota was 17.8 kg C m�2 based
on 95% of land area and that was very similar to our
lognormal value to 2 m. Bliss and others later revised
their data with a filled database and 100% of the land
area, and their revised lognormal-adjusted SOC values
were higher than our lognormal data (N.B. Bliss, per-
sonal communication of unpublished data). They ap-
parently did not correct the rock fragment data in
STATSGO. Davidson and Lefebvre (1993) reported an
average mass SOC of 15.5 kg/m2 from 0 to about
1.65 m for Maine, using a normal approach on the
STATSGO database. Their lognormal-adjusted mass
SOC was about 1.6 times higher than our estimate,
apparently because they used uncorrected RFC values
from STATSGO. Our STATSGO data set for Maine
included 30 to 54% nulls and invalid zero values for
large rock fragments (Table 2). STATSGO was last
revised in December 1994 and they may also have been
using a preliminary data set. The area-weighted aver-
ages for Maine and Minnesota using the normal
method were 16.8 and 25.3 kg C/m2 to 1 m (J. S. Kern
unpublished data 1994). Kern’s averages from a pedon
database were higher than those in this study because
he did not yet correct for rock fragment volume. John-
son and Kern (2003) also calculated higher SOC values
than ours (J. S. Kern personal communication of un-
published data) because they apparently did not cor-
rect the RFC in STATSGO and because they deleted
pedon data from soils with indications of agricultural
land use and thus lower OM values

The STATSGO datasets used in this study were in-
sufficient in size to compute separate SOC estimates for
mineral and organic soils as did Johnson and Kern
(2003). Therefore, we evaluated area-weighted mass
SOC by forest-type groups and compared results to
those of Johnson and Kern (2003, p. 66) for mineral
soils only (Figure 3). Our methods and sources differed
from those of Johnson and Kern (2003) because we
used lognormal calculation methods and FIA data to
estimate extent and location of forest-type groups only
in Maine and Minnesota, and they used normal meth-
ods of SOC calculation and Advanced Very High Res-
olution Radiometer (AVHRR) and Landsat Thematic
Mapper remote-sensing data across the entire United
States. Variation in differences could be explained by
different spatial patterns of forest-type groups between
FIA versus remote sensing data. Those differences
could be quantified using GIS software in future stud-
ies. The FIA data are presumed to be more accurate
because the plots were visited and verified in the field
during data collection but the remote sensing data was
apparently not field verified. The elm–ash–cottonwood
(7.22 kg C/m2) and the spruce–fir (17.73 kg C/m2)
forest-type groups had the highest SOC (to 1 m depth)
in Maine and Minnesota, respectively (Figure 3). The
range of SOC values in Maine was from 5.90 (maple–
beech–birch) to 7.22 kg C/m2 (elm–ash–cottonwood)
(Figure 3).

Soil organic carbon estimates by forest-type group
are significant piece of information that contributes to
a better understanding of the carbon cycle and partic-
ularly the complex interaction between trees and soils

Table 4. Comparison of results between log-transformed SOC data from this study and lognormal-adjusted data
from other studiesa

Data source and date Depth (m)

Normal (kg C/m2) Lognormalb (kg C/m2)

Maine Minnesota Maine Minnesota

Lognormal 2003 0–1 — — 6.37 13.71
Lognormal 2003 0–2 — — 7.88 17.38
Franzmeier and others (1985) 0–1 — 15.5 — 12.92
Davidson and Lefebvre (1993) 0–1.65 15.5 — 10.33 —
Bliss and others (1995) 0–1.5c 8.4d 21.3e 5.60 17.75
Bliss and others (2003) 0–1.5f 14.06 22.95 9.37 19.13
Kern (1994) 0–1 16.82 25.25 11.21 21.04
Johnson and Kern (2003) 0–1 13.67 21.57 9.11 17.98
Johnson and Kern (2003) 0–1.5 16.44 28.14 10.96 23.45

aOriginal (normal) data are shown for comparison.
bEstimated by dividing normal SOC from other studies by 1.5 in Maine and by 1.2 in Minnesota.
cSOC was not calculated in or below layers where OML, OMH, BDL, and BDH were null or zero.
dBased on 40% of the land area.
eBased on 95% of the land area.
fApproximate depth.
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within forest ecosystems. The kind of trees influence
soil properties and affect the distribution and quantity
of SOC in the soil (Johnson and Kern 2003). Over the
long term, with the means of remote sensing data (sat-
ellite imagery, aerial photography) land use changes
detection would be extended to mass SOC flux esti-
mates in the forests. In addition, SOC by forest type
group may be used in the USDA-FS FORCARB forest
carbon budgeting model (Heath and others 2002).

Conclusions

The averaging and replacement methods used in
this study are flexible tools for dealing with null values
and identifying invalid zero values in STATSGO data-
bases. This study was conducted as a preliminary effort
to automate and critique procedures and rules for SOC
estimation from Maine and Minnesota STATSGO data,
but the automated, systematic procedures can be used

Figure 3. Lognormal SOC and data from Johnson and Kern (2003; p. 66) for mineral soils to 1 m depth with error bars
representing one standard deviation from the mean.
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to edit STATSGO data from multiple states. These
methods will have use for correcting current and future
versions of STATSGO (scheduled for update in 2004)
because STATSGO has not been updated since 1994
and because not all of the data from county soil surveys
that will be used as input data for the update has been
uniformly and rigorously edited and filled. The Mi-
crosoft Access scripts will be made available upon re-
quest and can be customized for use in specific regions
from menu choices without the use of programming
language.

STATSGO was produced on a state-by-state basis.
The USDA-NRCS has reorganized and now deals with
soil survey by MLRA rather than by state boundaries.
The procedures in this study may be helpful to produc-
ers of MLRA revision through aggregation of
STATSGO (MARTHA’S) databases (http://soils.usd-
a.gov/soil_survey/geography/mlra/marthas.htm ) in
the future as they identify and remove some STATSGO
spatial and map unit composition disagreements along
state borders and reduce abrupt changes in SOC along
state lines.

This study revealed several ways that improvements
could be made in our procedures and in STATSGO
data. The averages derived from the grouping proce-
dures in this study would be improved if pedon data
were used to replace missing information and verify
existing property values of the dominant soils in each
MLRA or LRR. This addition would require a reliable
method for relating STATSGO database layers to soil
series genetic horizons. To increase the data pool size,
STATSGO data from different states would have to be
aggregated before calculation of average values by
MLRA or LRR. Then, if sufficient numbers of valid data
occur to produce meaningful averages, data could be
grouped for all soil orders or for lower taxonomic levels
than soil order. If there are not enough data, then data
for Andisols, Spodosols and Mollisols could be grouped
by drainage class categories. For Spodosols, all drainage
classes should probably be separated, while for the
other orders it may be sufficient to group poorly and
very poorly drained soils from the better-drained soils.

Addition of surface litter horizons has been recom-
mended by Homann and others (1998), Johnson and
Kern (2003), and Galbraith and others (2003). Johnson
and Kern (2003) also recommend screening of
STATSGO components for land use, so that OM values
specific to land use or vegetation group can be devel-
oped. STATSGO was easily joined with FIA data to
produced SOC averages by forest-type group, making
the FIA database more complete and leading the way to
producing total ecosystem C estimates in the forests

that include C from standing biomass, surface litter,
dead roots, and soil organic matter.

Regional or national carbon inventories for other
vegetation types can also be completed by integrating
digital land cover data with mass SOC from STATSGO
and vegetation biomass and root production data from
other sources. Finally, soil sampling and litter layer
collection could be incorporated with future data col-
lection at USDA-NRCS National Resource Inventory
and FIA plots and the SOC data used to conduct some
validation studies of regional and national SOC inven-
tories such as the one in this study.
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